Bloom Filter
   HOME
*



picture info

Bloom Filter
A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton Howard Bloom in 1970, that is used to test whether an element is a member of a set. False positive matches are possible, but false negatives are not – in other words, a query returns either "possibly in set" or "definitely not in set". Elements can be added to the set, but not removed (though this can be addressed with the counting Bloom filter variant); the more items added, the larger the probability of false positives. Bloom proposed the technique for applications where the amount of source data would require an impractically large amount of memory if "conventional" error-free hashing techniques were applied. He gave the example of a hyphenation algorithm for a dictionary of 500,000 words, out of which 90% follow simple hyphenation rules, but the remaining 10% require expensive disk accesses to retrieve specific hyphenation patterns. With sufficient core memory, an error-free hash coul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bloom Filter
A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton Howard Bloom in 1970, that is used to test whether an element is a member of a set. False positive matches are possible, but false negatives are not – in other words, a query returns either "possibly in set" or "definitely not in set". Elements can be added to the set, but not removed (though this can be addressed with the counting Bloom filter variant); the more items added, the larger the probability of false positives. Bloom proposed the technique for applications where the amount of source data would require an impractically large amount of memory if "conventional" error-free hashing techniques were applied. He gave the example of a hyphenation algorithm for a dictionary of 500,000 words, out of which 90% follow simple hyphenation rules, but the remaining 10% require expensive disk accesses to retrieve specific hyphenation patterns. With sufficient core memory, an error-free hash coul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bloom (shader Effect)
Bloom (sometimes referred to as light bloom or glow) is a computer graphics effect used in video games, demos, and high-dynamic-range rendering (HDRR) to reproduce an imaging artifact of real-world cameras. The effect produces fringes (or feathers) of light extending from the borders of bright areas in an image, contributing to the illusion of an extremely bright light overwhelming the camera or eye capturing the scene. It became widely used in video games after an article on the technique was published by the authors of ''Tron 2.0'' in 2004. Theory The physical basis of bloom is that, in the real world, lenses can never focus perfectly. Even a perfect lens will convolve the incoming image with an Airy disk (the diffraction pattern produced by passing a point light source through a circular aperture). Under normal circumstances, these imperfections are not noticeable, but an intensely bright light source will cause the imperfections to become visible. As a result, the image of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Self-balancing Binary Search Tree
In computer science, a self-balancing binary search tree (BST) is any node-based binary search tree that automatically keeps its height (maximal number of levels below the root) small in the face of arbitrary item insertions and deletions.Donald Knuth. ''The Art of Computer Programming'', Volume 3: ''Sorting and Searching'', Second Edition. Addison-Wesley, 1998. . Section 6.2.3: Balanced Trees, pp.458–481. These operations when designed for a self-balancing binary search tree, contain precautionary measures against boundlessly increasing tree height, so that these abstract data structures receive the attribute "self-balancing". For height-balanced binary trees, the height is defined to be logarithmic \mathcal O(\log n) in the number n of items. This is the case for many binary search trees, such as AVL trees and red–black trees. Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items. Se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Collision Resolution Scheme
In computing, a hash table, also known as hash map, is a data structure that implements an associative array or dictionary. It is an abstract data type that maps keys to values. A hash table uses a hash function to compute an ''index'', also called a ''hash code'', into an array of ''buckets'' or ''slots'', from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. Ideally, the hash function will assign each key to a unique bucket, but most hash table designs employ an imperfect hash function, which might cause hash ''collisions'' where the hash function generates the same index for more than one key. Such collisions are typically accommodated in some way. In a well-dimensioned hash table, the average time complexity for each lookup is independent of the number of elements stored in the table. Many hash table designs also allow arbitrary insertions and deletions of key–value pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hash Table
In computing, a hash table, also known as hash map, is a data structure that implements an associative array or dictionary. It is an abstract data type that maps keys to values. A hash table uses a hash function to compute an ''index'', also called a ''hash code'', into an array of ''buckets'' or ''slots'', from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. Ideally, the hash function will assign each key to a unique bucket, but most hash table designs employ an imperfect hash function, which might cause hash ''collisions'' where the hash function generates the same index for more than one key. Such collisions are typically accommodated in some way. In a well-dimensioned hash table, the average time complexity for each lookup is independent of the number of elements stored in the table. Many hash table designs also allow arbitrary insertions and deletions of key–value pairs, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Azuma–Hoeffding Inequality
In probability theory, the Azuma–Hoeffding inequality (named after Kazuoki Azuma and Wassily Hoeffding) gives a concentration result for the values of martingales that have bounded differences. Suppose \ is a martingale (or super-martingale) and :, X_k - X_, \leq c_k, \, almost surely. Then for all positive integers ''N'' and all positive reals ''\epsilon'', :\text(X_N - X_0 \geq \epsilon) \leq \exp\left ( \right). And symmetrically (when ''X''''k'' is a sub-martingale): :\text(X_N - X_0 \leq -\epsilon) \leq \exp\left ( \right). If ''X'' is a martingale, using both inequalities above and applying the union bound allows one to obtain a two-sided bound: :\text(, X_N - X_0, \geq \epsilon) \leq 2\exp\left ( \right). Proof The proof shares similar idea of the proof for the general form of Azuma's inequality listed below. Actually, this can be viewed as a direct corollary of the general form of Azuma's inequality. A general form of Azuma's inequality Limitation of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stirling Numbers Of The Second Kind
In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of ''n'' objects into ''k'' non-empty subsets and is denoted by S(n,k) or \textstyle \left\. Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. Stirling numbers of the second kind are one of two kinds of Stirling numbers, the other kind being called Stirling numbers of the first kind (or Stirling cycle numbers). Mutually inverse (finite or infinite) triangular matrices can be formed from the Stirling numbers of each kind according to the parameters ''n'', ''k''. Definition The Stirling numbers of the second kind, written S(n,k) or \lbrace\textstyle\rbrace or with other notations, count the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets. Equivalently, they count the number of different equivalence relations with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

E (mathematical Constant)
The number , also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of the natural logarithms. It is the limit of as approaches infinity, an expression that arises in the study of compound interest. It can also be calculated as the sum of the infinite series e = \sum\limits_^ \frac = 1 + \frac + \frac + \frac + \cdots. It is also the unique positive number such that the graph of the function has a slope of 1 at . The (natural) exponential function is the unique function that equals its own derivative and satisfies the equation ; hence one can also define as . The natural logarithm, or logarithm to base , is the inverse function to the natural exponential function. The natural logarithm of a number can be defined directly as the area under the curve between and , in which case is the value of for which this area equals one (see image). There are various other characteriz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bloom Filter Fp Probability
Bloom or blooming may refer to: Science and technology Biology * Bloom, one or more flowers on a flowering plant * Algal bloom, a rapid increase or accumulation in the population of algae in an aquatic system * Jellyfish bloom, a collective noun for a large group of jellyfish * Epicuticular wax bloom, a whitish haze due to small crystals of wax, occurring on the surface of many fruits * Bloom syndrome, autosomal recessive human genetic disorder that predispose patient to a wide variety of cancer Computing * Bloom filter, a probabilistic method to find a subset of a given set * Bloom (shader effect), a graphics effect used in modern 3D computer games * Bloom (software), a generative music application for the iPhone and iPod Touch Art conservation * Wax bloom, an efflorescence of wax or stearic acid affecting oil pastels * Saponification in art conservation, a chalky white efflorescence on old oil paintings * Bloom, pigment migration from wetter to drier surfaces of a wat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Information Content
In information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory. The Shannon information can be interpreted as quantifying the level of "surprise" of a particular outcome. As it is such a basic quantity, it also appears in several other settings, such as the length of a message needed to transmit the event given an optimal source coding of the random variable. The Shannon information is closely related to ''entropy'', which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trie
In computer science, a trie, also called digital tree or prefix tree, is a type of ''k''-ary search tree, a tree data structure used for locating specific keys from within a set. These keys are most often strings, with links between nodes defined not by the entire key, but by individual characters. In order to access a key (to recover its value, change it, or remove it), the trie is traversed depth-first, following the links between nodes, which represent each character in the key. Unlike a binary search tree, nodes in the trie do not store their associated key. Instead, a node's position in the trie defines the key with which it is associated. This distributes the value of each key across the data structure, and means that not every node necessarily has an associated value. All the children of a node have a common prefix of the string associated with that parent node, and the root is associated with the empty string. This task of storing data accessible by its prefix can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]