Bit Slip
   HOME





Bit Slip
In digital transmission, bit slip is the loss or gain of a bit or bits, caused by clock driftvariations in the respective clock rates of the transmitting and receiving devices. One cause of bit slip is overflow of a receive buffer that occurs when the transmitter's clock rate exceeds that of the receiver. This causes one or more bits to be dropped for lack of storage capacity. One way to maintain timing between transmitting and receiving devices is to employ an asynchronous protocol such as start-stop. Alternatively, bit slip can be prevented by using a self-clocking signal (such as a signal modulated using OQPSK) or using a line coding such as Manchester encoding. Another cause is "losing count", as on a hard drive: if a hard drive encounters a long string of 0s, without any 1s (or a string of 1s without 0s), it may lose track of the frame between fields, and suffer bit slip. When a pulse of N consecutive zero bits are sent, clock drift may cause the hardware to app ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digital Data
Digital data, in information theory and information systems, is information represented as a string of Discrete mathematics, discrete symbols, each of which can take on one of only a finite number of values from some alphabet (formal languages), alphabet, such as letters or digits. An example is a text document, which consists of a string of alphanumeric characters. The most common form of digital data in modern information systems is ''binary data'', which is represented by a string of binary digits (bits) each of which can have one of two values, either 0 or 1. Digital data can be contrasted with ''analog data'', which is represented by a value from a continuous variable, continuous range of real numbers. Analog data is transmitted by an analog signal, which not only takes on continuous values but can vary continuously with time, a continuous real-valued function of time. An example is the air pressure variation in a sound wave. The word ''digital'' comes from the same sour ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Manchester Encoding
In telecommunications and data storage, Manchester code (also known as phase encoding, or PE) is a line code in which the encoding of each data bit is either low then high, or high then low, for equal time. It is a self-clocking signal with no DC component. Consequently, electrical connections using a Manchester code are easily galvanically isolated. Manchester code derives its name from its development at the University of Manchester, where the coding was used for storing data on the magnetic drums of the Manchester Mark 1 computer. Manchester code was widely used for magnetic recording on 1600 bpi computer tapes before the introduction of 6250 bpi tapes which used the more efficient group-coded recording. Manchester code was used in early Ethernet physical layer standards and is still used in consumer IR protocols, RFID and near-field communication. It was and still is used for uploading commands to the Voyager spacecraft. Features Manchester coding is a spec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Erasure Code
In coding theory, an erasure code is a forward error correction (FEC) code under the assumption of bit erasures (rather than bit errors), which transforms a message of ''k'' symbols into a longer message (code word) with ''n'' symbols such that the original message can be recovered from a subset of the ''n'' symbols. The fraction ''r'' = ''k''/''n'' is called the code rate. The fraction ''k’/k'', where ''k’'' denotes the number of symbols required for recovery, is called reception efficiency. The recovery algorithm expects that it is known which of the ''n'' symbols are lost. History Erasure coding was invented by Irving Reed and Gustave Solomon in 1960. There are many different erasure coding schemes. The most popular erasure codes are Reed-Solomon coding, Low-density parity-check code (LDPC codes), and Turbo codes. As of 2023, modern data storage systems can be designed to tolerate the complete failure of a few disks without data loss, using one of 3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deletion Channel
A deletion channel is a communications channel model used in coding theory and information theory. In this model, a transmitter sends a bit (a zero or a one), and the receiver either receives the bit (with probability p) or does not receive anything without being notified that the bit was dropped (with probability 1-p). Determining the capacity of the deletion channel is an open problem.. The deletion channel should not be confused with the binary erasure channel which is much simpler to analyze. Formal description Let p be the deletion probability, 0 < p < 1. The iid binary deletion channel is defined as follows: Given an input sequence of n bits (X_i) as input, each bit in X_n can be deleted with probability p. The deletion positions are unknown to the sender and the receiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Clock Drift
Clock drift refers to several related phenomena where a clock does not run at exactly the same rate as a reference clock. That is, after some time the clock "drifts apart" or gradually desynchronizes from the other clock. All clocks are subject to drift, causing eventual divergence unless resynchronized. In particular, the drift of crystal-based clocks used in computers requires some synchronization mechanism for any high-speed communication. Computer clock drift can be utilized to build random number generators. These can however be exploited by timing attacks. In non-atomic clocks Everyday clocks such as wristwatches have finite precision. Eventually they require correction to remain accurate. The rate of drift depends on the clock's quality, sometimes the stability of the power source, the ambient temperature, and other subtle environmental variables. Thus the same clock can have different drift rates at different occasions. More advanced clocks and old mechanical clock ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Block Cipher Mode Of Operation
In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation (encryption or decryption) of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block. Most modes require a unique binary sequence, often called an initialization vector (IV), for each encryption operation. The IV must be non-repeating, and for some modes must also be random. The initialization vector is used to ensure that distinct ciphertexts are produced even when the same plaintext is encrypted multiple times independently with the same key. Block ciphers may be capable of operating on more than one block size, but during transformation the block size is always fixed. Block cipher modes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scrambler
In telecommunications, a scrambler is a device that transposes or inverts signals or otherwise encodes a message at the sender's side to make the message unintelligible at a receiver not equipped with an appropriately set descrambling device. Whereas encryption usually refers to operations carried out in the digital domain, scrambling usually refers to operations carried out in the analog domain. Scrambling is accomplished by the addition of components to the original signal or the changing of some important component of the original signal in order to make extraction of the original signal difficult. Examples of the latter might include removing or changing vertical or horizontal sync pulses in television signals; televisions will not be able to display a picture from such a signal. Some modern scramblers are actually encryption devices, the name remaining due to the similarities in use, as opposed to internal operation. In telecommunications and recording, a ''scrambler'' (also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1000BASE-T
In computer networking, Gigabit Ethernet (GbE or 1 GigE) is the term applied to transmitting Ethernet frames at a rate of a gigabit per second. The most popular variant, 1000BASE-T, is defined by the IEEE 802.3ab standard. It came into use in 1999, and has replaced Fast Ethernet in wired local networks due to its considerable speed improvement over Fast Ethernet, as well as its use of cables and equipment that are widely available, economical, and similar to previous standards. The first standard for faster 10 Gigabit Ethernet was approved in 2002. History Ethernet was the result of research conducted at Xerox PARC in the early 1970s, and later evolved into a widely implemented physical and link layer protocol. Fast Ethernet increased the speed from 10 to 100 megabits per second (). Gigabit Ethernet was the next iteration, increasing the speed to . The initial standard for Gigabit Ethernet was produced by the IEEE in June 1998 as IEEE 802.3z, and required optical fiber. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear-feedback Shift Register
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a Linear#Boolean functions, linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value. The initial value of the LFSR is called the seed, and because the operation of the register is deterministic, the stream of values produced by the register is completely determined by its current (or previous) state. Likewise, because the register has a finite number of possible states, it must eventually enter a repeating cycle. However, an LFSR with a Primitive polynomial (field theory), well-chosen feedback function can produce a sequence of bits that appears random and has a Maximal length sequence, very long cycle. Applications of LFSRs include generating Pseudorandomness, pseudo-random numbers, Pseudorandom n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Run Length Limited
Run-length limited (RLL) is a line coding technique that is used to send arbitrary data over a communications channel with bandwidth limits. RLL codes are defined by four main parameters: ''m'', ''n'', ''d'', ''k''. The first two, ''m''/''n'', refer to the rate of the code, while the remaining two specify the minimal ''d'' and maximal ''k'' number of zeroes between consecutive ones. This is used in both telecommunication and storage systems that move a medium past a fixed recording head. Specifically, RLL bounds the length of stretches (runs) of repeated bits during which the signal does not change. If the runs are too long, clock recovery is difficult; if they are too short, the high frequencies might be attenuated by the communications channel. By modulating the data, RLL reduces the timing uncertainty in decoding the stored data, which would lead to the possible erroneous insertion or removal of bits when reading the data back. This mechanism ensures that the boundaries bet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line Coding
In telecommunications, a line code is a pattern of voltage, current, or photons used to represent digital data transmitted down a communication channel or written to a storage medium. This repertoire of signals is usually called a constrained code in data storage systems. Some signals are more prone to error than others as the physics of the communication channel or storage medium constrains the repertoire of signals that can be used reliably. Common line encodings are unipolar, polar, bipolar, and Manchester code. Transmission and storage After line coding, the signal is put through a physical communication channel, either a transmission medium or data storage medium.Karl Paulsen"Coding for Magnetic Storage Mediums".2007. The most common physical channels are: * the line-coded signal can directly be put on a transmission line, in the form of variations of the voltage or current (often using differential signaling). * the line-coded signal (the '' baseband signal'') u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clock Drift
Clock drift refers to several related phenomena where a clock does not run at exactly the same rate as a reference clock. That is, after some time the clock "drifts apart" or gradually desynchronizes from the other clock. All clocks are subject to drift, causing eventual divergence unless resynchronized. In particular, the drift of crystal-based clocks used in computers requires some synchronization mechanism for any high-speed communication. Computer clock drift can be utilized to build random number generators. These can however be exploited by timing attacks. In non-atomic clocks Everyday clocks such as wristwatches have finite precision. Eventually they require correction to remain accurate. The rate of drift depends on the clock's quality, sometimes the stability of the power source, the ambient temperature, and other subtle environmental variables. Thus the same clock can have different drift rates at different occasions. More advanced clocks and old mechanical clock ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]