Better-quasi-order
   HOME
*





Better-quasi-order
In order theory a better-quasi-ordering or bqo is a quasi-ordering that does not admit a certain type of bad array. Every better-quasi-ordering is a well-quasi-ordering. Motivation Though ''well-quasi-ordering'' is an appealing notion, many important infinitary operations do not preserve well-quasi-orderedness. An example due to Richard Rado illustrates this. In a 1965 paper Crispin Nash-Williams formulated the stronger notion of ''better-quasi-ordering'' in order to prove that the class of trees of height ω is well-quasi-ordered under the '' topological minor'' relation. Since then, many quasi-orderings have been proven to be well-quasi-orderings by proving them to be better-quasi-orderings. For instance, Richard Laver established Laver's theorem (previously a conjecture of Roland Fraïssé) by proving that the class of scattered linear order types is better-quasi-ordered. More recently, Carlos Martinez-Ranero has proven that, under the proper forcing axiom, the class o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Richard Laver
Richard Joseph Laver (October 20, 1942 – September 19, 2012) was an American mathematician, working in set theory. Biography Laver received his PhD at the University of California, Berkeley in 1969, under the supervision of Ralph McKenzie, with a thesis on ''Order Types and Well-Quasi-Orderings''. The largest part of his career he spent as Professor and later Emeritus Professor at the University of Colorado at Boulder. Richard Laver died in Boulder, CO, on September 19, 2012 after a long illness. Research contributions Among Laver's notable achievements some are the following. * Using the theory of better-quasi-orders, introduced by Nash-Williams, (an extension of the notion of well-quasi-ordering), he proved Fraïssé's conjecture (now Laver's theorem): if (''A''0,≤),(''A''1,≤),...,(''A''''i'',≤), are countable ordered sets, then for some ''i''<''j'' (''A''i,≤) isomorphically embeds into (''A''''j'',≤). This also holds if the ordered sets ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE