HOME
*



picture info

Beta Skeleton
In computational geometry and geometric graph theory, a ''β''-skeleton or beta skeleton is an undirected graph defined from a set of points in the Euclidean plane. Two points ''p'' and ''q'' are connected by an edge whenever all the angles ''prq'' are sharper than a threshold determined from the numerical parameter ''β''. Circle-based definition Let ''β'' be a positive real number, and calculate an angle ''θ'' using the formulas :\theta = \begin \sin^ \frac, & \text\beta \ge 1 \\ \pi - \sin^, & \text\beta\le 1\end For any two points ''p'' and ''q'' in the plane, let ''R''''pq'' be the set of points for which angle ''prq'' is greater than ''θ''. Then ''R''''pq'' takes the form of a union of two open disks with diameter ''βd''(''p'',''q'') for ''β'' ≥ 1 and ''θ'' ≤ π/2, and it takes the form of the intersection of two open disks with diameter ''d''(''p'',''q'')/''β'' for ''β'' ≤ 1 and ''θ'' ≥ π/2. When ''β''& ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beta-skeleton
In computational geometry and geometric graph theory, a ''β''-skeleton or beta skeleton is an undirected graph defined from a set of points in the Euclidean plane. Two points ''p'' and ''q'' are connected by an edge whenever all the angles ''prq'' are sharper than a threshold determined from the numerical parameter ''β''. Circle-based definition Let ''β'' be a positive real number, and calculate an angle ''θ'' using the formulas :\theta = \begin \sin^ \frac, & \text\beta \ge 1 \\ \pi - \sin^, & \text\beta\le 1\end For any two points ''p'' and ''q'' in the plane, let ''R''''pq'' be the set of points for which angle ''prq'' is greater than ''θ''. Then ''R''''pq'' takes the form of a union of two open disks with diameter ''βd''(''p'',''q'') for ''β'' ≥ 1 and ''θ'' ≤ π/2, and it takes the form of the intersection of two open disks with diameter ''d''(''p'',''q'')/''β'' for ''β'' ≤ 1 and ''θ'' ≥ π/2. When ''β''& ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gabriel Graph
In mathematics and computational geometry, the Gabriel graph of a set S of points in the Euclidean plane expresses one notion of proximity or nearness of those points. Formally, it is the graph G with vertex set S in which any two distinct points p \in S and q \in S are adjacent precisely when the closed disc having pq as a diameter contains no other points. Another way of expressing the same adjacency criterion is that p and q should be the two closest given points to their midpoint, with no other given point being as close. Gabriel graphs naturally generalize to higher dimensions, with the empty disks replaced by empty closed balls. Gabriel graphs are named after K. Ruben Gabriel, who introduced them in a paper with Robert R. Sokal in 1969. Percolation For Gabriel graphs of infinite random point sets, the finite site percolation threshold gives the fraction of points needed to support connectivity: if a random subset of fewer vertices than the threshold is given, the rema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geographic Information System
A geographic information system (GIS) is a type of database containing Geographic data and information, geographic data (that is, descriptions of phenomena for which location is relevant), combined with Geographic information system software, software tools for managing, Spatial analysis, analyzing, and Cartographic design, visualizing those data. In a broader sense, one may consider such a system to also include human users and support staff, procedures and workflows, body of knowledge of relevant concepts and methods, and institutional organizations. The uncounted plural, ''geographic information systems'', also abbreviated GIS, is the most common term for the industry and profession concerned with these systems. It is roughly synonymous with geoinformatics and part of the broader geospatial field, which also includes GPS, remote sensing, etc. Geographic information science, the academic discipline that studies these systems and their underlying geographic principles, may also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curvature
In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonical example is that of a circle, which has a curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature. The curvature ''at a point'' of a differentiable curve is the curvature of its osculating circle, that is the circle that best approximates the curve near this point. The curvature of a straight line is zero. In contrast to the tangent, which is a vector quantity, the curvature at a point is typically a scalar quantity, that is, it is expressed by a single real number. For surfaces (and, more generally for higher-dimensional manifolds), that are embedded in a Euclidean space, the concept of curvature is more complex, as it depends on the choice of a direction on the surface or man ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connect The Dots
Connect the dots (also known as connect-the-dots, dot to dot, or join the dots) is a form of puzzle containing a sequence of numbered dots. When a line is drawn connecting the dots the outline of an object is revealed. The puzzles frequently contain simple line art to enhance the image created or to assist in rendering a complex section of the image. Connect the dots puzzles are generally created for children. The use of numbers can be replaced with letters or other symbols. Versions for older solvers frequently have extra solving steps to discover the order, such as those used in puzzlehunts and the connect-the-dots crosswords invented by Liz Gorski. Other uses of the term In adult discourse the phrase "connect the dots" can be used as a metaphor to illustrate an ability (or inability) to associate one idea with another, to find the "big picture", or salient feature, in a mass of data. It can mean using extrapolation to solve a mystery from clues, or else come to a conclusio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image Analysis
Image analysis or imagery analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face. Computers are indispensable for the analysis of large amounts of data, for tasks that require complex computation, or for the extraction of quantitative information. On the other hand, the human visual cortex is an excellent image analysis apparatus, especially for extracting higher-level information, and for many applications — including medicine, security, and remote sensing — human analysts still cannot be replaced by computers. For this reason, many important image analysis tools such as edge detectors and neural networks are inspired by human visual perception models. Digital Digital Image Analysis or Computer Image Analysis is when a computer or electrical device au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dense Graph
In mathematics, a dense graph is a graph in which the number of edges is close to the maximal number of edges (where every pair of vertices is connected by one edge). The opposite, a graph with only a few edges, is a sparse graph. The distinction of what constitutes a dense or sparse graph is ill-defined, and depends on context. The graph density of simple graphs is defined to be the ratio of the number of edges with respect to the maximum possible edges. For undirected simple graphs, the graph density is: :D = \frac = \frac For directed, simple graphs, the maximum possible edges is twice that of undirected graphs (as there are two directions to an edge) so the density is: :D = \frac = \frac where is the number of edges and is the number of vertices in the graph. The maximum number of edges for an undirected graph is = \frac2, so the maximal density is 1 (for complete graphs) and the minimal density is 0 . Upper density ''Upper density'' is an extension of the concept of g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Polygon
In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either convex polygon, convex, star polygon, star or Skew polygon, skew. In the limit (mathematics), limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a Line (geometry), straight line), if the edge length is fixed. General properties ''These properties apply to all regular polygons, whether convex or star polygon, star.'' A regular ''n''-sided polygon has rotational symmetry of order ''n''. All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Naïve Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometric Spanner
A geometric spanner or a -spanner graph or a -spanner was initially introduced as a weighted graph over a set of points as its vertices for which there is a -path between any pair of vertices for a fixed parameter . A -path is defined as a path through the graph with weight at most times the spatial distance between its endpoints. The parameter is called the stretch factor or dilation factor of the spanner. In computational geometry, the concept was first discussed by L.P. Chew in 1986, although the term "spanner" was not used in the original paper. The notion of graph spanners has been known in graph theory: -spanners are spanning subgraphs of graphs with similar dilation property, where distances between graph vertices are defined in graph-theoretical terms. Therefore geometric spanners are graph spanners of complete graphs embedded in the plane with edge weights equal to the distances between the embedded vertices in the corresponding metric. Spanners may be used in co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stretch Factor
The stretch factor (i.e., bilipschitz constant) of an embedding measures the factor by which the embedding distorts distances. Suppose that one metric space is embedded into another metric space by a metric map, a continuous one-to-one function that preserves or reduces the distance between every pair of points. Then the embedding gives rise to two different notions of distance between pairs of points in . Any pair of points in has both an intrinsic distance, the distance from to in , and a smaller extrinsic distance, the distance from to in . The stretch factor of the pair is the ratio between these two distances, . The stretch factor of the whole mapping is the supremum of the stretch factors of all pairs of points. The stretch factor has also been called the distortion or dilation of the mapping. The stretch factor is important in the theory of geometric spanners, weighted graphs that approximate the Euclidean distances between a set of points in the Euclidean plane ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Delaunay Triangulation
In mathematics and computational geometry, a Delaunay triangulation (also known as a Delone triangulation) for a given set P of discrete points in a general position is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P). Delaunay triangulations maximize the minimum of all the angles of the triangles in the triangulation; they tend to avoid sliver triangles. The triangulation is named after Boris Delaunay for his work on this topic from 1934. For a set of points on the same line there is no Delaunay triangulation (the notion of triangulation is degenerate for this case). For four or more points on the same circle (e.g., the vertices of a rectangle) the Delaunay triangulation is not unique: each of the two possible triangulations that split the quadrangle into two triangles satisfies the "Delaunay condition", i.e., the requirement that the circumcircles of all triangles have empty interiors. By considering circumscribed spheres, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]