Backwards Causation
   HOME
*



picture info

Backwards Causation
Retrocausality, or backwards causation, is a concept of cause and effect in which an effect precedes its cause in time and so a later event affects an earlier one. In quantum physics, the distinction between cause and effect is not made at the most fundamental level and so time-symmetric systems can be viewed as causal or retrocausal. Philosophical considerations of time travel often address the same issues as retrocausality, as do treatments of the subject in fiction, but the two phenomena are distinct. Philosophy Philosophical efforts to understand causality extend back at least to Aristotle's discussions of the four causes. It was long considered that an effect preceding its cause is an inherent self-contradiction because, as 18th century philosopher David Hume discussed, when examining two related events, the cause, by definition, is the one that precedes the effect. In the 1950s, Michael Dummett wrote in opposition to such definitions, stating that there was no philosophical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cause And Effect
Causality (also referred to as causation, or cause and effect) is influence by which one event, process, state, or object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cause is partly responsible for the effect, and the effect is partly dependent on the cause. In general, a process has many causes, which are also said to be ''causal factors'' for it, and all lie in its past. An effect can in turn be a cause of, or causal factor for, many other effects, which all lie in its future. Some writers have held that causality is metaphysically prior to notions of time and space. Causality is an abstraction that indicates how the world progresses. As such a basic concept, it is more apt as an explanation of other concepts of progression than as something to be explained by others more basic. The concept is like those of agency and efficacy. For this reason, a leap of intuition may be needed to grasp it. Accord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tachyon
A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such particles did exist they could be used to send signals faster than light. According to the theory of relativity this would violate causality, leading to logical paradoxes such as the grandfather paradox. Tachyons would exhibit the unusual property of increasing in speed as their energy decreases, and would require infinite energy to slow down to the speed of light. No verifiable experimental evidence for the existence of such particles has been found. In the 1967 paper that coined the term, Gerald Feinberg proposed that tachyonic particles could be made from excitations of a quantum field with imaginary mass. However, it was soon realized that Feinberg's model did not in fact allow for superluminal (faster-than-light) particles or signals and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chronology Protection Conjecture
The chronology protection conjecture is a hypothesis first proposed by Stephen Hawking that laws of physics beyond those of standard general relativity prevent time travel on all but microscopic scales - even when the latter theory states that it should be possible (such as in scenarios where faster than light travel is allowed). The permissibility of time travel is represented mathematically by the existence of closed timelike curves in some solutions to the field equations of general relativity. The chronology protection conjecture should be distinguished from chronological censorship under which every closed timelike curve passes through an event horizon, which might prevent an observer from detecting the causal violation (also known as chronology violation). Etymology In a 1992 paper, Hawking uses the metaphorical device of a "Chronology Protection Agency" as a personification of the aspects of physics that make time travel impossible at macroscopic scales, thus apparently ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Defect
A topological soliton occurs when two adjoining structures or spaces are in some way "out of phase" with each other in ways that make a seamless transition between them impossible. One of the simplest and most commonplace examples of a topological soliton occurs in old-fashioned coiled telephone handset cords, which are usually coiled clockwise. Years of picking up the handset can end up coiling parts of the cord in the opposite counterclockwise direction, and when this happens there will be a distinctive larger loop that separates the two directions of coiling. This odd looking transition loop, which is neither clockwise nor counterclockwise, is an excellent example of a topological soliton. No matter how complex the context, anything that qualifies as a topological soliton must at some level exhibit this same simple issue of reconciliation seen in the twisted phone cord example. Topological solitons arise with ease when creating the crystalline semiconductors used in modern elect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exotic Matter
There are several proposed types of exotic matter: * Hypothetical particles and states of matter that have "exotic" physical properties that would violate known laws of physics, such as a particle having a negative mass. * Hypothetical particles and states of matter that have not yet been encountered, but whose properties would be within the realm of mainstream physics if found to exist. * Several particles whose existence has been experimentally confirmed that are conjectured to be exotic hadrons and within the Standard Model. * States of matter that are not commonly encountered, such as Bose–Einstein condensates, fermionic condensates, nuclear matter, quantum spin liquid, string-net liquid, supercritical fluid, color-glass condensate, quark–gluon plasma, Rydberg matter, Rydberg polaron, photonic matter, and time crystal but whose properties are entirely within the realm of mainstream physics. * Forms of matter that are poorly understood, such as dark matter and mirror ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cosmic Strings
Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simply connected. Their existence was first contemplated by the theoretical physicist Tom Kibble in the 1970s. The formation of cosmic strings is somewhat analogous to the imperfections that form between crystal grains in solidifying liquids, or the cracks that form when water freezes into ice. The phase transitions leading to the production of cosmic strings are likely to have occurred during the earliest moments of the universe's evolution, just after cosmological inflation, and are a fairly generic prediction in both quantum field theory and string theory models of the early universe. Theories containing cosmic strings In string theory, the role of cosmic strings can be played by the fundamental strings (or F-strings) themselves that define ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Traversable Wormhole
A wormhole (Einstein-Rosen bridge) is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. A wormhole can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are consistent with the general theory of relativity, but whether wormholes actually exist remains to be seen. Many scientists postulate that wormholes are merely projections of a fourth spatial dimension, analogous to how a two-dimensional (2D) being could experience only part of a three-dimensional (3D) object. Theoretically, a wormhole might connect extremely long distances such as a billion light years, or short distances such as a few meters, or different points in time, or even different universes. In 1995, Matt Visser suggested there may be many wormholes in the universe if cosmic strings with negative mass were generated in the early ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive differently where and when events occur. Until the 20th century, it was assumed that the three-dimensional geometry of the universe (its spatial expression in terms of coordinates, distances, and directions) was independent of one-dimensional time. The physicist Albert Einstein helped develop the idea of spacetime as part of his theory of relativity. Prior to his pioneering work, scientists had two separate theories to explain physical phenomena: Isaac Newton's laws of physics described the motion of massive objects, while James Clerk Maxwell's electromagnetic models explained the properties of light. However, in 1905, Einstein based a work on special relativity on two postulates: * The laws of physics are invari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Einstein Field Equation
In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form of a tensor equation which related the local ' (expressed by the Einstein tensor) with the local energy, momentum and stress within that spacetime (expressed by the stress–energy tensor). Analogously to the way that electromagnetic fields are related to the distribution of charges and currents via Maxwell's equations, the EFE relate the spacetime geometry to the distribution of mass–energy, momentum and stress, that is, they determine the metric tensor of spacetime for a given arrangement of stress–energy–momentum in the spacetime. The relationship between the metric tensor and the Einstein tensor allows the EFE to be written as a set of nonlinear partial differential equations when used in this way. The solutions of the EFE a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exact Solutions In General Relativity
In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field. Background and definition These tensor fields should obey any relevant physical laws (for example, any electromagnetic field must satisfy Maxwell's equations). Following a standard recipe which is widely used in mathematical physics, these tensor fields should also give rise to specific contributions to the stress–energy tensor T^. (A field is described by a Lagrangian, varying with respect to the field should give the field equations and varying with respect to the metric should give the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

World Line
The world line (or worldline) of an object is the path that an object traces in 4- dimensional spacetime. It is an important concept in modern physics, and particularly theoretical physics. The concept of a "world line" is distinguished from concepts such as an " orbit" or a " trajectory" (e.g., a planet's ''orbit in space'' or the ''trajectory'' of a car on a road) by the ''time'' dimension, and typically encompasses a large area of spacetime wherein perceptually straight paths are recalculated to show their ( relatively) more absolute position states—to reveal the nature of special relativity or gravitational interactions. The idea of world lines originates in physics and was pioneered by Hermann Minkowski. The term is now most often used in relativity theories (i.e., special relativity and general relativity). Usage in physics In physics, a world line of an object (approximated as a point in space, e.g., a particle or observer) is the sequence of spacetime events corr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]