Areal Velocity
   HOME
*



picture info

Areal Velocity
In classical mechanics, areal velocity (also called sector velocity or sectorial velocity) is a pseudovector whose length equals the rate of change at which area is swept out by a particle as it moves along a curve. In the adjoining figure, suppose that a particle moves along the blue curve. At a certain time ''t'', the particle is located at point ''B'', and a short while later, at time ''t'' + Δ''t'', the particle has moved to point ''C''. The region swept out by the particle is shaded in green in the figure, bounded by the line segments ''AB'' and ''AC'' and the curve along which the particle moves. The areal velocity magnitude (i.e., the ''areal speed'') is this region's area divided by the time interval Δ''t'' in the limit that Δ''t'' becomes vanishingly small. The vector direction is postulated normal to the plane containing the position and velocity vectors of the particle, following a convention known as the right hand rule. The concept of areal velocity is closely l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kepler's Second Law
In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that: # The orbit of a planet is an ellipse with the Sun at one of the two foci. # A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time. # The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit. The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The second law helps to establish that when a planet is closer to the Sun, it travels faster. The third law e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Coordinate System
In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci F_ and F_ are generally taken to be fixed at -a and +a, respectively, on the x-axis of the Cartesian coordinate system. Basic definition The most common definition of elliptic coordinates (\mu, \nu) is : x = a \ \cosh \mu \ \cos \nu : y = a \ \sinh \mu \ \sin \nu where \mu is a nonnegative real number and \nu \in , 2\pi On the complex plane, an equivalent relationship is : x + iy = a \ \cosh(\mu + i\nu) These definitions correspond to ellipses and hyperbolae. The trigonometric identity : \frac + \frac = \cos^ \nu + \sin^ \nu = 1 shows that curves of constant \mu form ellipses, whereas the hyperbolic trigonometric identity : \frac - \frac = \cosh^ \mu - \sinh^ \mu = 1 shows that curves of constant \nu form hyperbolae. Scale factors In an orthogonal coordinate system the lengths of the bas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Specific Angular Momentum
In celestial mechanics, the specific relative angular momentum (often denoted \vec or \mathbf) of a body is the angular momentum of that body divided by its mass. In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum, divided by the mass of the body in question. Specific relative angular momentum plays a pivotal role in the analysis of the two-body problem, as it remains constant for a given orbit under ideal conditions. "Specific" in this context indicates angular momentum per unit mass. The SI unit for specific relative angular momentum is square meter per second. Definition The specific relative angular momentum is defined as the cross product of the relative position vector \mathbf and the relative velocity vector \mathbf . \mathbf = \mathbf\times \mathbf = \frac where \mathbf is the angular momentum vector, defined as \mathbf \times m \mathbf. The \mathbf vector is always perpendicular to the instantaneo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angular Momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, frisbees, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it. The three-dimensional angular momentum for a point particle is classically represented as a pseudovector , the cross product of the particle's position vector (relative to some origin) and its momentum vector; the latter is in Newtonian mechanics. Unlike linear momentum, angular m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classical Central-force Problem
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions. The solution of this problem is important to classical mechanics, since many naturally occurring forces are central. Examples include gravity and electromagnetism as described by Newton's law of universal gravitation and Coulomb's law, respectively. The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cross Product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and is denoted by the symbol \times. Given two linearly independent vectors and , the cross product, (read "a cross b"), is a vector that is perpendicular to both and , and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product (projection product). If two vectors have the same direction or have the exact opposite direction from each other (that is, they are ''not'' linearly independent), or if either one has zero length, then their cross product is zero. More generally, the magnitude of the product equals the area of a parallelogram with the vectors for sides; in particular, the magnitude of the product of two perpendic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Of A Function
Although the function (sin ''x'')/''x'' is not defined at zero, as ''x'' becomes closer and closer to zero, (sin ''x'')/''x'' becomes arbitrarily close to 1. In other words, the limit of (sin ''x'')/''x'', as ''x'' approaches zero, equals 1. In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input. Formal definitions, first devised in the early 19th century, are given below. Informally, a function ''f'' assigns an output ''f''(''x'') to every input ''x''. We say that the function has a limit ''L'' at an input ''p,'' if ''f''(''x'') gets closer and closer to ''L'' as ''x'' moves closer and closer to ''p''. More specifically, when ''f'' is applied to any input ''sufficiently'' close to ''p'', the output value is forced ''arbitrarily'' close to ''L''. On the other hand, if some inputs very close to ''p'' are taken to outputs that stay a fixed distance apart, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circular Orbit Of Planet With (eccentricty Of 0
Circular may refer to: * The shape of a circle * ''Circular'' (album), a 2006 album by Spanish singer Vega * Circular letter (other) ** Flyer (pamphlet), a form of advertisement * Circular reasoning, a type of logical fallacy * Circular reference * Government circular, a written statement of government policy See also * Circular DNA (other) * Circular Line (other) Circle Line or circular line is an expression commonly used to describe a circle route in a public transport network or system. Circle Line or Circular line may also refer to: Railways Asia Bangladesh * Chittagong Circular Railway China ... * Circularity (other) {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Patrick D'Arcy
Patrick d'Arcy (27 September 1725 – 18 October 1779) was an Irish mathematician born in Kiltullagh, County Galway in the west of Ireland. His family, who were Catholics, suffered under the penal laws. In 1739 d'Arcy was sent abroad by his parents to an uncle in Paris. He was tutored in mathematics by Jean-Baptiste Clairaut, and became a friend of Jean-Baptiste's son, Alexis-Claude Clairaut, ( Alexis Clairaut), who was a brilliant young mathematician. d'Arcy made original contributions to dynamics. He is best known for his part in the discovery of the principle of angular momentum, in a form which was known as "the principle of areas," which he announced in 1746. See the article on areal velocity. d'Arcy also had an illustrious military career in the French army. He obtained the title of "Count" in the French nobility. He was a generous patron of Irish refugees in France. In addition to his contributions to dynamics, he performed research on artillery and on electr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of mathematics such as analytic number theory, complex analysis, and infinitesimal calculus. He introduced much of modern mathematical terminology and notation, including the notion of a mathematical function. He is also known for his work in mechanics, fluid dynamics, optics, astronomy and music theory. Euler is held to be one of the greatest mathematicians in history and the greatest of the 18th century. A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is the master of us all." Carl Friedrich Gauss remarked: "The study of Euler's works will remain the best school for the different fields of mathematics, and nothing else can replace it." Euler is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]