Approximate Counting Algorithm
   HOME





Approximate Counting Algorithm
The approximate counting algorithm allows the counting of a large number of events using a small amount of memory. Invented in 1977 by Robert Morris of Bell Labs, it uses probabilistic techniques to increment the counter. It was fully analyzed in the early 1980s by Philippe Flajolet of INRIA Rocquencourt, who coined the name approximate counting, and strongly contributed to its recognition among the research community. When focused on high quality of approximation and low probability of failure, Nelson and Yu showed that a very slight modification to the Morris Counter is asymptotically optimal amongst all algorithms for the problem. The algorithm is considered one of the precursors of streaming algorithms, and the more general problem of determining the frequency moments of a data stream has been central to the field. Theory of operation Using Morris' algorithm, the counter represents an "order of magnitude estimate" of the actual count. The approximation is mathematically ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Morris (cryptographer)
Robert Morris (July 25, 1932 – June 26, 2011) was an American cryptographer and computer scientist. His name sometimes appears with a middle initial H that he adopted informally. __TOC__ Family and education Morris was born in Boston, Massachusetts. His parents were Walter W. Morris, a salesman, and Helen Kelly Morris, a homemaker. He received a bachelor's degree in mathematics from Harvard University in 1957 and a master's degree in applied mathematics from Harvard in 1958. He married Anne Farlow, and they had three children together: Robert Tappan Morris (author of the 1988 Morris worm), Meredith Morris, and Benjamin Morris. Bell Labs From 1960 until 1986, Morris was a researcher at Bell Labs and worked on Multics and later Unix. Using the TMG (language), TMG compiler-compiler, Morris, together with McIlroy, developed the early implementation of the PL/I compiler called EPL for the Multics project. The pair also contributed a version of TYPSET and RUNOFF, runoff text-format ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unbiased Estimator
In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called ''unbiased''. In statistics, "bias" is an property of an estimator. Bias is a distinct concept from Consistent estimator, consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased (see Consistent estimator#Bias versus consistency, bias versus consistency for more). All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Artificial Intelligence
Artificial intelligence (AI) is the capability of computer, computational systems to perform tasks typically associated with human intelligence, such as learning, reasoning, problem-solving, perception, and decision-making. It is a field of research in computer science that develops and studies methods and software that enable machines to machine perception, perceive their environment and use machine learning, learning and intelligence to take actions that maximize their chances of achieving defined goals. High-profile applications of AI include advanced web search engines (e.g., Google Search); recommendation systems (used by YouTube, Amazon (company), Amazon, and Netflix); virtual assistants (e.g., Google Assistant, Siri, and Amazon Alexa, Alexa); autonomous vehicles (e.g., Waymo); Generative artificial intelligence, generative and Computational creativity, creative tools (e.g., ChatGPT and AI art); and Superintelligence, superhuman play and analysis in strategy games (e.g., ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Compression
In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information. Typically, a device that performs data compression is referred to as an encoder, and one that performs the reversal of the process (decompression) as a decoder. The process of reducing the size of a data file is often referred to as data compression. In the context of data transmission, it is called source coding: encoding is done at the source of the data before it is stored or transmitted. Source coding should not be confused with channel coding, for error detection and correction or line coding, the means for mapping data onto a sig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Conjunction
In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdot in which \wedge is the most modern and widely used. The ''and'' of a set of operands is true if and only if ''all'' of its operands are true, i.e., A \land B is true if and only if A is true and B is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English language, English "Conjunction (grammar), and"; * In programming languages, the Short-circuit evaluation, short-circuit and Control flow, control structure; * In set theory, Intersection (set theory), intersection. * In Lattice (order), lattice theory, logical conjunction (Infimum and supremum, greatest lower bound). Notati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponent
In mathematics, exponentiation, denoted , is an operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product of multiplying bases: b^n = \underbrace_.In particular, b^1=b. The exponent is usually shown as a superscript to the right of the base as or in computer code as b^n. This binary operation is often read as " to the power "; it may also be referred to as " raised to the th power", "the th power of ", or, most briefly, " to the ". The above definition of b^n immediately implies several properties, in particular the multiplication rule:There are three common notations for multiplication: x\times y is most commonly used for explicit numbers and at a very elementary level; xy is most common when variables are used; x\cdot y is used for emphasizing that one talks of multiplication or when omitting the multiplication sign would ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Powers Of Two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In the fast-growing hierarchy, is exactly equal to f_1^n(1). In the Hardy hierarchy, is exactly equal to H_(1). Powers of two with non-negative exponents are integers: , , and is two multiplied by itself times. The first ten powers of 2 for non-negative values of are: : 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... By comparison, powers of two with negative exponents are fractions: for positive integer , is one half multiplied by itself times. Thus the first few negative powers of 2 are , , , , etc. Sometimes these are called ''inverse powers of two'' because each is the multiplicative inverse of a positive power of two. Base of the binary numeral system Because two is the base of the binary numeral system, powers of two are common in computer science. Written in binary, a power of two always h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudo-random
A pseudorandom sequence of numbers is one that appears to be statistically random, despite having been produced by a completely deterministic and repeatable process. Pseudorandom number generators are often used in computer programming, as traditional sources of randomness available to humans (such as rolling dice) rely on physical processes not readily available to computer programs, although developments in hardware random number generator technology have challenged this. Background The generation of random numbers has many uses, such as for random sampling, Monte Carlo methods, board games, or gambling. In physics, however, most processes, such as gravitational acceleration, are deterministic, meaning that they always produce the same outcome from the same starting point. Some notable exceptions are radioactive decay and quantum measurement, which are both modeled as being truly random processes in the underlying physics. Since these processes are not practical sources of r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Order Of Magnitude
In a ratio scale based on powers of ten, the order of magnitude is a measure of the nearness of two figures. Two numbers are "within an order of magnitude" of each other if their ratio is between 1/10 and 10. In other words, the two numbers are within about a factor of 10 of each other. For example, 1 and 1.02 are within an order of magnitude. So are 1 and 2, 1 and 9, or 1 and 0.2. However, 1 and 15 are not within an order of magnitude, since their ratio is 15/1 = 15 > 10. The reciprocal ratio, 1/15, is less than 0.1, so the same result is obtained. Differences in order of magnitude can be measured on a base-10 logarithmic scale in " decades" (i.e., factors of ten). For example, there is one order of magnitude between 2 and 20, and two orders of magnitude between 2 and 200. Each division or multiplication by 10 is called an order of magnitude. This phrasing helps quickly express the difference in scale between 2 and 2,000,000: they differ by 6 orders of magnitude. Examples o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bell Labs
Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the company operates several laboratories in the United States and around the world. As a former subsidiary of the American Telephone and Telegraph Company (AT&T), Bell Labs and its researchers have been credited with the development of radio astronomy, the transistor, the laser, the photovoltaic cell, the charge-coupled device (CCD), information theory, the Unix operating system, and the programming languages B (programming language), B, C (programming language), C, C++, S (programming language), S, SNOBOL, AWK, AMPL, and others, throughout the 20th century. Eleven Nobel Prizes and five Turing Awards have been awarded for work completed at Bell Laboratories. Bell Labs had its origin in the complex corporate organization of the Bell System telepho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Streaming Algorithm
In computer science, streaming algorithms are algorithms for processing data streams in which the input is presented as a sequence of items and can be examined in only a few passes, typically one-pass algorithm, just one. These algorithms are designed to operate with limited memory, generally L (complexity), logarithmic in the size of the stream and/or in the maximum value in the stream, and may also have limited processing time per item. As a result of these constraints, streaming algorithms often produce approximate answers based on a summary or "sketch" of the data stream. History Though streaming algorithms had already been studied by Munro and Paterson as early as 1978, as well as Philippe Flajolet and G. Nigel Martin in 1982/83, the field of streaming algorithms was first formalized and popularized in a 1996 paper by Noga Alon, Yossi Matias, and Mario Szegedy. For this paper, the authors later won the Gödel Prize in 2005 "for their foundational contribution to streaming ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jelani Nelson
Jelani Osei Nelson (; born June 28, 1984) is an American Professor of Electrical Engineering and Computer Sciences at the University of California, Berkeley. He won the 2014 Presidential Early Career Award for Scientists and Engineers. Nelson is the creator of ''AddisCoder'', a computer science summer program for Ethiopian high school students in Addis Ababa. Early life and education Nelson was born to an Ethiopian mother and an African-American father in Los Angeles, then grew up in St. Thomas, U.S. Virgin Islands. He studied mathematics and computer science at the Massachusetts Institute of Technology and remained there to complete his doctoral studies in computer science. His Master's dissertation, ''External-Memory Search Trees with Fast Insertions'', was supervised by Bradley C. Kuszmaul and Charles E. Leiserson. He was a member of the theory of computation group, working on efficient algorithms for massive datasets. His doctoral dissertation, ''Sketching and Streaming Hig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]