Ambient Metric
   HOME
*





Ambient Metric
In conformal geometry, the ambient construction refers to a construction of Charles Fefferman and Robin Graham for which a conformal manifold of dimension ''n'' is realized (''ambiently'') as the boundary of a certain Poincaré manifold, or alternatively as the celestial sphere of a certain pseudo-Riemannian manifold. The ambient construction is canonical in the sense that it is performed only using the conformal class of the metric: it is conformally invariant. However, the construction only works asymptotically, up to a certain order of approximation. There is, in general, an obstruction to continuing this extension past the critical order. The obstruction itself is of tensorial character, and is known as the (conformal) obstruction tensor. It is, along with the Weyl tensor, one of the two primitive invariants in conformal differential geometry. Aside from the obstruction tensor, the ambient construction can be used to define a class of conformally invariant differential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Geometry
In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry. Conformal manifolds A conformal manifold is a pseudo-Riemannian manifold equipped with an equivalence class of metric tensors, in which two metrics ''g'' and ''h'' are equivalent if and only if :h = \lambda^2 g , where ''λ'' is a real-valued smooth function defined on the manifold and is called the conformal factor. An equivalence cla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minkowski Space
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity. Minkowski space is closely associated with Einstein's theories of special relativity and general relativity and is the most common mathematical structure on which special relativity is formulated. While the individual components in Euclidean space and time may differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total distance in spacetime between events.This makes spacetime distance an invariant. Becaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Holographic Principle
The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string-theory interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Leonard Susskind said, “The three-dimensional world of ordinary experience––the universe filled with galaxies, stars, planets, houses, boulders, and people––is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AdS/CFT Correspondence
In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles. The duality represents a major advance in the understanding of string theory and quantum gravity.de Haro et al. 2013, p. 2 This is because it provides a non-perturbative formulation of string theory with certain boundary conditions and because it is the most successful realization of the holographic principle, an idea in quantum gravity originally proposed by Gerard 't Hooft and promoted by Leonard Susskind. It also provides a powerf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bach Tensor
In differential geometry and general relativity, the Bach tensor is a trace-free tensor of rank 2 which is conformally invariant in dimension . Before 1968, it was the only known conformally invariant tensor that is algebraically independent of the Weyl tensor.P. Szekeres, Conformal Tensors. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 304, No. 1476 (Apr. 2, 1968), pp113€“122 In abstract indices the Bach tensor is given by :B_ = P_^d+\nabla^c\nabla_cP_-\nabla^c\nabla_aP_ where ''W'' is the Weyl tensor, and ''P'' the Schouten tensor given in terms of the Ricci tensor ''R_'' and scalar curvature ''R'' by :P_=\frac\left(R_-\fracg_\right). See also *Cotton tensor In differential geometry, the Cotton tensor on a (pseudo)- Riemannian manifold of dimension ''n'' is a third-order tensor concomitant of the metric. The vanishing of the Cotton tensor for is necessary and sufficient condition for the manifold ... * Obstruction tensor Ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schouten Tensor
In Riemannian geometry the Schouten tensor is a second-order tensor introduced by Jan Arnoldus Schouten defined for by: :P=\frac \left(\mathrm -\frac g\right)\, \Leftrightarrow \mathrm=(n-2) P + J g \, , where Ric is the Ricci tensor (defined by contracting the first and third indices of the Riemann tensor), ''R'' is the scalar curvature, ''g'' is the Riemannian metric, J=\fracR is the trace of ''P'' and ''n'' is the dimension of the manifold. The Weyl tensor equals the Riemann curvature tensor minus the Kulkarni–Nomizu product of the Schouten tensor with the metric. In an index notation :R_=W_+g_ P_-g_ P_-g_ P_+g_ P_\, . The Schouten tensor often appears in conformal geometry In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two di ... because of its relatively simple conformal tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pullback (differential Geometry)
Suppose that is a smooth map between smooth manifolds ''M'' and ''N''. Then there is an associated linear map from the space of 1-forms on ''N'' (the linear space of sections of the cotangent bundle) to the space of 1-forms on ''M''. This linear map is known as the pullback (by ''φ''), and is frequently denoted by ''φ''∗. More generally, any covariant tensor field – in particular any differential form – on ''N'' may be pulled back to ''M'' using ''φ''. When the map ''φ'' is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from ''N'' to ''M'' or vice versa. In particular, if ''φ'' is a diffeomorphism between open subsets of R''n'' and R''n'', viewed as a change of coordinates (perhaps between different charts on a manifold ''M''), then the pullback and pushforward describe the transformation properties of covariant and contravariant tensors used in more traditional (coordinate dependent) approaches ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Derivative
In differential geometry, the Lie derivative ( ), named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field (including scalar functions, vector fields and one-forms), along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold. Functions, tensor fields and forms can be differentiated with respect to a vector field. If ''T'' is a tensor field and ''X'' is a vector field, then the Lie derivative of ''T'' with respect to ''X'' is denoted \mathcal_X(T). The differential operator T \mapsto \mathcal_X(T) is a derivation of the algebra of tensor fields of the underlying manifold. The Lie derivative commutes with contraction and the exterior derivative on differential forms. Although there are many concepts of taking a derivative in differential geometry, they all agree when the expression being differentiated is a function or scalar field. Thus in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Total Space
In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a product space B \times F is defined using a continuous surjective map, \pi : E \to B, that in small regions of E behaves just like a projection from corresponding regions of B \times F to B. The map \pi, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the ''trivial'' case, E is just B \times F, and the map \pi is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a man ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Conformal Connection
In conformal differential geometry, a conformal connection is a Cartan connection on an ''n''-dimensional manifold ''M'' arising as a deformation of the Klein geometry given by the celestial ''n''-sphere, viewed as the homogeneous space :O+(n+1,1)/''P'' where ''P'' is the stabilizer of a fixed null line through the origin in R''n''+2, in the orthochronous Lorentz group O+(n+1,1) in ''n''+2 dimensions. Normal Cartan connection Any manifold equipped with a conformal structure has a canonical conformal connection called the normal Cartan connection. Formal definition A conformal connection on an ''n''-manifold ''M'' is a Cartan geometry modelled on the conformal sphere, where the latter is viewed as a homogeneous space for O+(n+1,1). In other words it is an O+(n+1,1)-bundle equipped with * a O+(n+1,1)-connection (the Cartan connection) * a reduction of structure group to the stabilizer of a point in the conformal sphere (a null line in R''n''+1,1) such that the solder form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ricci Flat
In the mathematics, mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant. In Lorentzian geometry, a number of Ricci-flat metrics are known from works of Karl Schwarzschild, Roy Kerr, and Yvonne Choquet-Bruhat. In Riemannian geometry, Shing-Tung Yau's resolution of the Calabi conjecture produced a number of Ricci-flat metrics on Kähler manifolds. Definition A pseudo-Riemannian manifold is said to be Ricci-flat if its Ricci curvature is zero. It is direct to verify that, except in dimension two, a metric is Ricci-flat if and only if its Einstein tensor is zero. Ricci-flat manifolds are one of three special type of Einstein manifold, arising as the special case of scalar curv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Boundary Condition
In the mathematical study of differential equations, the Dirichlet (or first-type) boundary condition is a type of boundary condition, named after Peter Gustav Lejeune Dirichlet (1805–1859). When imposed on an ordinary or a partial differential equation, it specifies the values that a solution needs to take along the boundary of the domain. In finite element method (FEM) analysis, ''essential'' or Dirichlet boundary condition is defined by weighted-integral form of a differential equation. The dependent unknown ''u in the same form as the weight function w'' appearing in the boundary expression is termed a ''primary variable'', and its specification constitutes the ''essential'' or Dirichlet boundary condition. The question of finding solutions to such equations is known as the Dirichlet problem. In applied sciences, a Dirichlet boundary condition may also be referred to as a fixed boundary condition. Examples ODE For an ordinary differential equation, for instance, y'' + y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]