HOME
*





Apeirotope
In geometry, an apeirotope or infinite polytope is a generalized polytope which has infinitely many facets. Definition Abstract apeirotope An abstract ''n''-polytope is a partially ordered set ''P'' (whose elements are called ''faces'') such that ''P'' contains a least face and a greatest face, each maximal totally ordered subset (called a ''flag'') contains exactly ''n'' + 2 faces, ''P'' is strongly connected, and there are exactly two faces that lie strictly between ''a'' and ''b'' are two faces whose ranks differ by two. An abstract polytope is called an abstract apeirotope if it has infinitely many faces. An abstract polytope is called ''regular'' if its automorphism group Γ(''P'') acts transitively on all of the flags of ''P''. Classification There are two main geometric classes of apeirotope: * honeycombs in ''n'' dimensions, which completely fill an ''n''-dimensional space. *skew apeirotopes, comprising an ''n''-dimensional manifold in a higher space Honeycombs In gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skew Apeirotope
In geometry, an apeirotope or infinite polytope is a generalized polytope which has infinitely many Facet (geometry), facets. Definition Abstract apeirotope An Abstract polytope, abstract ''n''-polytope is a partially ordered set ''P'' (whose elements are called ''faces'') such that ''P'' contains a least face and a greatest face, each maximal totally ordered subset (called a ''flag'') contains exactly ''n'' + 2 faces, ''P'' is strongly connected, and there are exactly two faces that lie strictly between ''a'' and ''b'' are two faces whose ranks differ by two. An abstract polytope is called an abstract apeirotope if it has infinitely many faces. An abstract polytope is called ''regular'' if its automorphism group Γ(''P'') acts transitively on all of the flags of ''P''. Classification There are two main geometric classes of apeirotope: *honeycomb (geometry), honeycombs in ''n'' dimensions, which completely fill an n-dimensional space, ''n''-dimensional space. *skew apeirotopes, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apeirogon
In geometry, an apeirogon () or infinite polygon is a generalized polygon with a countably infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes. In some literature, the term "apeirogon" may refer only to the regular apeirogon, with an infinite dihedral group of symmetries. Definitions Classical constructive definition Given a point ''A0'' in a Euclidean space and a translation ''S'', define the point ''Ai'' to be the point obtained from ''i'' applications of the translation ''S'' to ''A0'', so ''Ai = Si(A0)''. The set of vertices ''Ai'' with ''i'' any integer, together with edges connecting adjacent vertices, is a sequence of equal-length segments of a line, and is called the regular apeirogon as defined by H. S. M. Coxeter. A regular apeirogon can be defined as a partition of the Euclidean line ''E1'' into infinitely many equal-length segments, generalizing the regular ''n''-gon, which can be defined as a partition of the circle ''S1'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polytope
In elementary geometry, a polytope is a geometric object with flat sides (''faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an -dimensional polytope or -polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a -polytope consist of -polytopes that may have -polytopes in common. Some theories further generalize the idea to include such objects as unbounded apeirotopes and tessellations, decompositions or tilings of curved manifolds including spherical polyhedra, and set-theoretic abstract polytopes. Polytopes of more than three dimensions were first discovered by Ludwig Schläfli before 1853, who called such a figure a polyschem. The German term ''polytop'' was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematicians as ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polytopes
In elementary geometry, a polytope is a geometric object with flat sides (''faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an -dimensional polytope or -polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a -polytope consist of -polytopes that may have -polytopes in common. Some theories further generalize the idea to include such objects as unbounded apeirotopes and tessellations, decompositions or tilings of curved manifolds including spherical polyhedra, and set-theoretic abstract polytopes. Polytopes of more than three dimensions were first discovered by Ludwig Schläfli before 1853, who called such a figure a polyschem. The German term ''polytop'' was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematicians as ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Polytope
In mathematics, an abstract polytope is an algebraic partially ordered set which captures the dyadic property of a traditional polytope without specifying purely geometric properties such as points and lines. A geometric polytope is said to be a ''realization'' of an abstract polytope in some real N-dimensional space, typically Euclidean. This abstract definition allows more general combinatorial structures than traditional definitions of a polytope, thus allowing new objects that have no counterpart in traditional theory. Introductory concepts Traditional versus abstract polytopes In Euclidean geometry, two shapes that are not similar can nonetheless share a common structure. For example a square and a trapezoid both comprise an alternating chain of four vertices and four sides, which makes them quadrilaterals. They are said to be isomorphic or “structure preserving”. This common structure may be represented in an underlying abstract polytope, a purely algebra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Facet (geometry)
In geometry, a facet is a feature of a polyhedron, polytope, or related geometric structure, generally of dimension one less than the structure itself. More specifically: * In three-dimensional geometry, a facet of a polyhedron is any polygon whose corners are vertices of the polyhedron, and is not a ''face''. To ''facet'' a polyhedron is to find and join such facets to form the faces of a new polyhedron; this is the reciprocal process to '' stellation'' and may also be applied to higher-dimensional polytopes. * In polyhedral combinatorics and in the general theory of polytopes, a facet (or hyperface) of a polytope of dimension ''n'' is a face that has dimension ''n'' − 1. Facets may also be called (''n'' − 1)-faces. In three-dimensional geometry, they are often called "faces" without qualification. * A facet of a simplicial complex is a maximal simplex, that is a simplex that is not a face of another simplex of the complex.. For (boundary complexes of) sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partially Ordered Set
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of Comparability, comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Honeycomb (geometry)
In geometry, a honeycomb is a ''space filling'' or ''close packing'' of polyhedral or higher-dimensional ''cells'', so that there are no gaps. It is an example of the more general mathematical ''tiling'' or ''tessellation'' in any number of dimensions. Its dimension can be clarified as ''n''-honeycomb for a honeycomb of ''n''-dimensional space. Honeycombs are usually constructed in ordinary Euclidean ("flat") space. They may also be constructed in non-Euclidean spaces, such as hyperbolic honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space. Classification There are infinitely many honeycombs, which have only been partially classified. The more regular ones have attracted the most interest, while a rich and varied assortment of others continue to be discovered. The simplest honeycombs to build are formed from stacked layers or ''slabs'' of prisms based on some tessellations of the plane. In particula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-dimensional Space
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was found necessa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Skew Apeirogon
In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder. Regular infinite skew polygons exist in the Petrie polygons of the affine and hyperbolic Coxeter groups. They are constructed a single operator as the composite of all the reflections of the Coxeter group. Regular zig-zag skew apeirogons in two dimensions A regular zig-zag skew apeirogon has (2*∞), D∞d Frieze group symmetry. Regular zig-zag skew apeirogons exist as Petrie polygons of the three regular tilings of the plane: , , and . These regular zig-zag skew apeirogons have internal angles of 90°, 120°, and 60° respectively, from the regular polygons within the tilings: Isotoxal skew apeirogons in two dime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]