Additive Utilities
   HOME
*





Additive Utilities
In economics, additive utility is a cardinal utility function with the sigma additivity property. Additivity (also called ''linearity'' or ''modularity'') means that "the whole is equal to the sum of its parts." That is, the utility of a set of items is the sum of the utilities of each item separately. Let S be a finite set of items. A cardinal utility function u:2^S\to\R, where 2^S is the power set of S, is additive if for any A, B\subseteq S, :u(A)+u(B)=u(A\cup B)-u(A\cap B). It follows that for any A\subseteq S, :u(A)=u(\emptyset)+\sum_\big(u(\)-u(\emptyset)\big). An additive utility function is characteristic of independent goods. For example, an apple and a hat are considered independent: the utility a person receives from having an apple is the same whether or not he has a hat, and vice versa. A typical utility function for this case is given at the right. Notes * As mentioned above, additivity is a property of cardinal utility functions. An analogous property of ordin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Economics
Economics () is the social science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interactions of Agent (economics), economic agents and how economy, economies work. Microeconomics analyzes what's viewed as basic elements in the economy, including individual agents and market (economics), markets, their interactions, and the outcomes of interactions. Individual agents may include, for example, households, firms, buyers, and sellers. Macroeconomics analyzes the economy as a system where production, consumption, saving, and investment interact, and factors affecting it: employment of the resources of labour, capital, and land, currency inflation, economic growth, and public policies that have impact on glossary of economics, these elements. Other broad distinctions within economics include those between positive economics, desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Utility
In economics, a cardinal utility function or scale is a utility index that preserves preference orderings uniquely up to positive affine transformations. Two utility indices are related by an affine transformation if for the value u(x_i) of one index ''u'', occurring at any quantity x_i of the goods bundle being evaluated, the corresponding value v(x_i) of the other index ''v'' satisfies a relationship of the form :v(x_i) = au(x_i) + b\!, for fixed constants ''a'' and ''b''. Thus the utility functions themselves are related by :v(x) = au(x) + b. The two indices differ only with respect to scale and origin. Thus if one is concave, so is the other, in which case there is often said to be diminishing marginal utility. Thus the use of cardinal utility imposes the assumption that levels of absolute satisfaction exist, so that the magnitudes of increments to satisfaction can be compared across different situations. In consumer choice theory, ordinal utility with its weaker assumption ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sigma Additivity
In mathematics, an additive set function is a function mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, \mu(A \cup B) = \mu(A) + \mu(B). If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of ''k'' disjoint sets (where ''k'' is a finite number) equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely-additive set function (the terms are equivalent). However, a finitely-additive set function might not have the additivity property for a union of an ''infinite'' number of sets. A σ-additive set function is a function that has the additivity property even for countably infinite many sets, that is, \mu\left(\bigcup_^\infty A_n\right) = \sum_^\infty \mu(A_n). Additivity and sigma-additivity are particularly important properties of measures. They are abstrac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Independent Goods
Independent goods are goods that have a zero cross elasticity of demand. Changes in the price of one good will have no effect on the demand for an independent good. Thus independent goods are neither complements nor substitutes. For example, a person's demand for nails is usually independent of his or her demand for bread, since they are two unrelated types of goods. Note that this concept is subjective and depends on the consumer's personal utility function. A Cobb-Douglas utility function implies that goods are independent. For goods in quantities ''X''1 and ''X''2, prices ''p''1 and ''p''2, income ''m'', and utility function parameter ''a'', the utility function : u(X_1, X_2) = X_1^a X_2^, when optimized subject to the budget constraint that expenditure on the two goods cannot exceed income, gives rise to this demand function for good 1: X_1= am/p_1, which does not depend on ''p''2. See also * Consumer theory * Good (economics and accounting) In economics, goods are i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Utility
In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask ''how much'' better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility. For example, suppose George tells us that "I prefer A to B and B to C". George's preferences can be represented by a function ''u'' such that: :u(A)=9, u(B)=8, u(C)=1 But critics of cardinal utility claim the only meaningful message of this function is the order u(A)>u(B)>u(C); the actual numbers are meaningless. Hence, George's preferences can also be represented by the following function ''v'': :v(A)=9, v(B)=2, v(C)=1 The functions ''u'' and ''v'' are ordinally equivalent – they represent George's preferences equally well. Ordinal utility contrasts ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weakly Additive
In fair division, a topic in economics, a preference relation is weakly additive if the following condition is met: : If A is preferred to B, and C is preferred to D (and the contents of A and C do not overlap) then A together with C is preferable to B together with D. Every additive utility function is weakly-additive. However, additivity is applicable only to cardinal utility functions, while weak additivity is applicable to ordinal utility functions. Weak additivity is often a realistic assumption when dividing up goods between claimants, and simplifies the mathematics of certain fair division problems considerably. Some procedures in fair division do not need the value of goods to be additive and only require weak additivity. In particular the adjusted winner procedure only requires weak additivity. Cases where weak additivity fails Case where the assumptions might fail would be either *The value of A and C together is the less than the sum of their values. For insta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Submodular Set Function
In mathematics, a submodular set function (also known as a submodular function) is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory (as functions modeling user preferences) and electrical networks. Recently, submodular functions have also found immense utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains. Definition If \Omega is a finite set, a submodular function is a set function f:2^\rightarrow \mathbb, where 2^\Omega denotes the power set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supermodular Function
In mathematics, a function :f\colon \mathbb^k \to \mathbb is supermodular if : f(x \uparrow y) + f(x \downarrow y) \geq f(x) + f(y) for all x, y \isin \mathbb^, where x \uparrow y denotes the componentwise maximum and x \downarrow y the componentwise minimum of x and y. If −''f'' is supermodular then ''f'' is called submodular, and if the inequality is changed to an equality the function is modular. If ''f'' is twice continuously differentiable, then supermodularity is equivalent to the condition : \frac \geq 0 \mbox i \neq j. Supermodularity in economics and game theory The concept of supermodularity is used in the social sciences to analyze how one Agent (economics), agent's decision affects the incentives of others. Consider a symmetric game with a smooth payoff function \,f defined over actions \,z_i of two or more players i \in . Suppose the action space is continuous; for simplicity, suppose each action is chosen from an interval: z_i \in [a,b]. In this context, sup ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Utility Functions On Indivisible Goods
Some branches of economics and game theory deal with indivisible goods, discrete items that can be traded only as a whole. For example, in combinatorial auctions there is a finite set of items, and every agent can buy a subset of the items, but an item cannot be divided among two or more agents. It is usually assumed that every agent assigns subjective utility to every subset of the items. This can be represented in one of two ways: * An ordinal utility preference relation, usually marked by \succ. The fact that an agent prefers a set A to a set B is written A \succ B. If the agent only weakly prefers A (i.e. either prefers A or is indifferent between A and B) then this is written A \succeq B. * A cardinal utility function, usually denoted by u. The utility an agent gets from a set A is written u(A). Cardinal utility functions are often normalized such that u(\emptyset)=0, where \emptyset is the empty set. A cardinal utility function implies a preference relation: u(A)>u(B) implies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Independent Goods
Independent goods are goods that have a zero cross elasticity of demand. Changes in the price of one good will have no effect on the demand for an independent good. Thus independent goods are neither complements nor substitutes. For example, a person's demand for nails is usually independent of his or her demand for bread, since they are two unrelated types of goods. Note that this concept is subjective and depends on the consumer's personal utility function. A Cobb-Douglas utility function implies that goods are independent. For goods in quantities ''X''1 and ''X''2, prices ''p''1 and ''p''2, income ''m'', and utility function parameter ''a'', the utility function : u(X_1, X_2) = X_1^a X_2^, when optimized subject to the budget constraint that expenditure on the two goods cannot exceed income, gives rise to this demand function for good 1: X_1= am/p_1, which does not depend on ''p''2. See also * Consumer theory * Good (economics and accounting) In economics, goods are i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]