HOME
*





Abstract Model Theory
In mathematical logic, abstract model theory is a generalization of model theory that studies the general properties of extensions of first-order logic and their models. Abstract model theory provides an approach that allows us to step back and study a wide range of logics and their relationships. The starting point for the study of abstract models, which resulted in good examples was Lindström's theorem. In 1974 Jon Barwise provided an axiomatization of abstract model theory.J. Barwise, 1974 , Annals of Mathematical Logic 7:221–265 See also * Lindström's theorem * Institution (computer science) * Institutional model theory References Further reading

* Mathematical logic Metatheorems Model theory {{Mathlogic-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lindström's Theorem
In mathematical logic, Lindström's theorem (named after Swedish logician Per Lindström, who published it in 1969) states that first-order logic is the '' strongest logic'' (satisfying certain conditions, e.g. closure under classical negation) having both the (countable) compactness property and the (downward) Löwenheim–Skolem property. Lindström's theorem is perhaps the best known result of what later became known as abstract model theory, the basic notion of which is an abstract logic; the more general notion of an institution was later introduced, which advances from a set-theoretical notion of model to a category-theoretical one. Lindström had previously obtained a similar result in studying first-order logics extended with Lindström quantifiers. Jouko VäänänenLindström's Theorem/ref> Lindström's theorem has been extended to various other systems of logic, in particular modal logics by Johan van Benthem and Sebastian Enqvist. Notes References * Per L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jean-Yves Béziau
Jean-Yves Béziau (; born January 15, 1965, in Orléans, France) is a professor and researcher of the Brazilian Research Council (CNPq) at the University of Brazil in Rio de Janeiro. Career Béziau works in the field of logic—in particular, paraconsistent logic, the square of opposition and universal logic. He holds a Maîtrise in Philosophy from Pantheon-Sorbonne University, a DEA in Philosophy from Pantheon-Sorbonne University, a PhD in Philosophy from the University of São Paulo, a MSc and a PhD in Logic and Foundations of Computer Science from Paris Diderot University. Béziau is the editor-in-chief of the journal '' Logica Universalis'' and of the ''South American Journal of Logic''—an online, open-access journal—as well as of the Springer book series ''Studies in Universal Logic.'' He is also the editor of ''College Publication's'' book series ''Logic PhDs'' He has launched four major international series of events: UNILOG (World Congress and School on Unive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jon Barwise
Kenneth Jon Barwise (; June 29, 1942 – March 5, 2000) was an American mathematician, philosopher and logician who proposed some fundamental revisions to the way that logic is understood and used. Education and career Born in Independence, Missouri to Kenneth T. and Evelyn Barwise, Jon was a precocious child. A pupil of Solomon Feferman at Stanford University, Barwise started his research in infinitary logic. After positions as assistant professor at Yale University and the University of Wisconsin, during which time his interests turned to natural language, he returned to Stanford in 1983 to direct the Center for the Study of Language and Information. He began teaching at Indiana University in 1990. He was elected a Fellow of the American Academy of Arts and Sciences in 1999. In his last year, Barwise was invited to give the 2000 Gödel Lecture; he died prior to the lecture. Philosophical and logical work Barwise contended that, by being explicit about the context in whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiomatization
In mathematics and logic, an axiomatic system is any Set (mathematics), set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A Theory (mathematical logic), theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system (usually formulated within model theory) that describes a set of sentences that is closed under logical implication. A formal proof is a complete rendition of a mathematical proof within a formal system. Properties An axiomatic system is said to be ''Consistency, consistent'' if it lacks contradiction. That is, it is impossible to derive both a statement and its negation from the system's axioms. Consistency is a key requirement for most axiomatic systems, as the presence of contradiction would allow any statement to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Institution (computer Science)
The notion of institution was created by Joseph Goguen and Rod Burstall in the late 1970s, in order to deal with the "population explosion among the logical systems used in computer science". The notion attempts to "formalize the informal" concept of logical system. The use of institutions makes it possible to develop concepts of specification languages (like structuring of specifications, parameterization, implementation, refinement, and development), proof calculi, and even tools in a way completely independent of the underlying logical system. There are also morphisms that allow to relate and translate logical systems. Important applications of this are re-use of logical structure (also called borrowing), and heterogeneous specification and combination of logics. The spread of institutional model theory has generalized various notions and results of model theory, and institutions themselves have impacted the progress of universal logic. Definition The theory of institution ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Institutional Model Theory
:''This page is about the concept in mathematical logic. For the concepts in sociology, see Institutional theory and Institutional logic''. In mathematical logic, institutional model theory generalizes a large portion of first-order model theory to an arbitrary logical system. Overview The notion of "logical system" here is formalized as an institution. Institutions constitute a model-oriented meta-theory on logical systems similar to how the theory of rings and modules constitute a meta-theory for classical linear algebra. Another analogy can be made with universal algebra versus groups, rings, modules etc. By abstracting away from the realities of the actual conventional logics, it can be noticed that institution theory comes in fact closer to the realities of non-conventional logics. Institutional model theory analyzes and generalizes classical model-theoretic notions and results, like * elementary diagrams * elementary embeddings * ultraproducts, Los' theorem * saturated mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]