Zeckendorf's Theorem
   HOME
*





Zeckendorf's Theorem
In mathematics, Zeckendorf's theorem, named after Belgian amateur mathematician Edouard Zeckendorf, is a theorem about the representation of integers as sums of Fibonacci numbers. Zeckendorf's theorem states that every positive integer can be represented uniquely as the sum of ''one or more'' distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers. More precisely, if is any positive integer, there exist positive integers , with , such that :N = \sum_^k F_, where is the th Fibonacci number. Such a sum is called the Zeckendorf representation of . The Fibonacci coding of can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is :. There are other ways of representing 64 as the sum of Fibonacci numbers : : : : but these are not Zeckendorf representations because 34 and 21 are consecutive Fibonacci numbers, as are 5 and 3. For any given positive integer, its Zeckendorf r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zeckendorf Representations 89px
Zeckendorf may refer to: * Edouard Zeckendorf, Belgian mathematician known for Zeckendorf's theorem * William Zeckendorf, Sr (1905-1976), American real estate developer * William Zeckendorf, Jr. (1929-2014), real estate developer * Zeckendorf Towers, a condominium in New York City * Zeckendorf, Bavaria. a town near Bamberg, Bavaria. * Louis Zeckendorf, American pioneer * Zeckendorf v. Steinfeld, a case decided by the Supreme Court of the United States The Supreme Court of the United States (SCOTUS) is the highest court in the federal judiciary of the United States. It has ultimate appellate jurisdiction over all U.S. federal court cases, and over state court cases that involve a point o ...
{{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Numbers
In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The Fibonacci numbers were first described in Indian mathematics, as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, later known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book ''Liber Abaci''. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the ''Fibonacci Quarterly''. Applications of Fibonacci numbers include co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cut-the-knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Mathematics, senior instructor at Hebrew University and software consultant at Ben Gurion University. He wrote extensively about arithmetic, probability, algebra, geometry, trigonometry and mathematical games. He was known for his contribution to heuristics and mathematics education, creating and maintaining the mathematically themed educational website ''Cut-the-Knot'' for the Mathematical Association of America (MAA) Online. He was a pioneer in mathematical education on the internet, having started ''Cut-the-Knot'' in October 1996.Interview with Alexander ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ostrowski Numeration
In mathematics, Ostrowski numeration, named after Alexander Ostrowski, is either of two related numeration systems based on continued fractions: a non-standard positional numeral system for integers and a non-integer representation of real numbers. Fix a positive irrational number ''α'' with continued fraction expansion 'a''0; ''a''1, ''a''2, ... Let (''q''''n'') be the sequence of denominators of the convergents ''p''''n''/''q''''n'' to α: so ''q''''n'' = ''a''''n''''q''''n''−1 + ''q''''n''−2. Let ''α''''n'' denote ''T''''n''(''α'') where ''T'' is the Gauss map ''T''(''x'') = , and write ''β''''n'' = (−1)''n''+1 ''α''0 ''α''1 ... ''α''''n'': we have ''β''''n'' = ''a''''n''''β''''n''−1 + ''β''''n''−2. Real number representations Every positive real ''x'' can be written as : x = \sum_^\infty b_n \beta_n \ where the integer coefficients 0 ≤ ''b''''n'' ≤ ''a''''n'' and if ''b''''n'' = ''a''''n'' then ''b''''n''−1 = 0. Integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Nim
Fibonacci nim is a mathematical subtraction game, a variant of the game of nim. Players alternate removing coins from a pile, on each move taking at most twice as many coins as the previous move, and winning by taking the last coin. The Fibonacci numbers feature heavily in its analysis; in particular, the first player can win if and only if the starting number of coins is not a Fibonacci number. A complete strategy is known for best play in games with a single pile of counters, but not for variants of the game with multiple piles. Rules and history Fibonacci nim is played by two players, who alternate removing coins or other counters from a pile. On the first move, a player is not allowed to take all of the coins, and on each subsequent move, the number of coins removed can be any number that is at most twice the previous move. According to the normal play convention, the player who takes the last coin wins. The game was first described by Michael J. Whinihan in 1963, crediting i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complete Sequence
In mathematics, a sequence of natural numbers is called a complete sequence if every positive integer can be expressed as a sum of values in the sequence, using each value at most once. For example, the sequence of powers of two (1, 2, 4, 8, ...), the basis of the binary numeral system, is a complete sequence; given any natural number, we can choose the values corresponding to the 1 bits in its binary representation and sum them to obtain that number (e.g. 37 = 1001012 = 1 + 4 + 32). This sequence is minimal, since no value can be removed from it without making some natural numbers impossible to represent. Simple examples of sequences that are not complete include the even numbers, since adding even numbers produces only even numbers—no odd number can be formed. Conditions for completeness Without loss of generality, assume the sequence ''a''''n'' is in non-decreasing order, and define the partial sums of ''a''''n'' as: :s_n=\sum_^n a_m. Then the conditions :a_0 = 1 \, :s_ \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Empty Sum
In mathematics, an empty sum, or nullary sum, is a summation where the number of terms is zero. The natural way to extend non-empty sums is to let the empty sum be the additive identity. Let a_1, a_2, a_3, ... be a sequence of numbers, and let :s_m = \sum_^m a_i = a_1 + \cdots + a_m be the sum of the first ''m'' terms of the sequence. This satisfies the recurrence :s_m = s_ + a_m provided that we use the following natural convention: s_0=0. In other words, a "sum" s_1 with only one term evaluates to that one term, while a "sum" s_0 with no terms evaluates to 0. Allowing a "sum" with only 1 or 0 terms reduces the number of cases to be considered in many mathematical formulas. Such "sums" are natural starting points in induction proofs, as well as in algorithms. For these reasons, the "empty sum is zero" extension is standard practice in mathematics and computer programming (assuming the domain has a zero element). For the same reason, the empty product is taken to be the multipl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]