Zariski–Riemann Space
   HOME
*





Zariski–Riemann Space
In algebraic geometry, a Zariski–Riemann space or Zariski space of a subring ''k'' of a field ''K'' is a locally ringed space whose points are valuation rings containing ''k'' and contained in ''K''. They generalize the Riemann surface of a complex curve. Zariski–Riemann spaces were introduced by who (rather confusingly) called them Riemann manifolds or Riemann surfaces. They were named Zariski–Riemann spaces after Oscar Zariski and Bernhard Riemann by who used them to show that algebraic varieties can be embedded in complete ones. Local uniformization (proved in characteristic 0 by Zariski) can be interpreted as saying that the Zariski–Riemann space of a variety is nonsingular in some sense, so is a sort of rather weak resolution of singularities. This does not solve the problem of resolution of singularities because in dimensions greater than 1 the Zariski–Riemann space is not locally affine and in particular is not a scheme. Definition The Zariski–Riemann sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE