Zahlbericht
   HOME
*





Zahlbericht
In mathematics, the ''Zahlbericht'' (number report) was a report on algebraic number theory by . History In 1893 the German mathematical society invited Hilbert and Minkowski to write reports on the theory of numbers. They agreed that Minkowski would cover the more elementary parts of number theory while Hilbert would cover algebraic number theory. Minkowski eventually abandoned his report, while Hilbert's report was published in 1897. It was reprinted in volume 1 of his collected works, and republished in an English translation in 1998. and and the English introduction to give detailed discussions of the history and influence of Hilbert's ''Zahlbericht''. Some earlier reports on number theory include the report by H. J. S. Smith in 6 parts between 1859 and 1865, reprinted in , and the report by . wrote an update of Hilbert's ''Zahlbericht'' that covered class field theory (republished in 1 volume as ). Contents Part 1 covers the theory of general number fields, including i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert–Speiser Theorem
In mathematics, the Hilbert–Speiser theorem is a result on cyclotomic fields, characterising those with a normal integral basis. More generally, it applies to any finite abelian extension of , which by the Kronecker–Weber theorem are isomorphic to subfields of cyclotomic fields. :Hilbert–Speiser Theorem. A finite abelian extension has a normal integral basis if and only if it is tamely ramified over . This is the condition that it should be a subfield of where is a squarefree odd number. This result was introduced by in his Zahlbericht and by . In cases where the theorem states that a normal integral basis does exist, such a basis may be constructed by means of Gaussian periods. For example if we take a prime number , has a normal integral basis consisting of all the -th roots of unity other than . For a field contained in it, the field trace can be used to construct such a basis in also (see the article on Gaussian periods). Then in the case of squarefre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and Algebraic function field, function fields. These properties, such as whether a ring (mathematics), ring admits unique factorization, the behavior of ideal (ring theory), ideals, and the Galois groups of field (mathematics), fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History of algebraic number theory Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and Algebraic function field, function fields. These properties, such as whether a ring (mathematics), ring admits unique factorization, the behavior of ideal (ring theory), ideals, and the Galois groups of field (mathematics), fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History of algebraic number theory Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1897 In Science
The year 1897 in science and technology involved some significant events, listed below. Chemistry * April 30 – J. J. Thomson first describes his discovery of the electron, in England. Earth sciences * June 12 – 1897 Assam earthquake of magnitude of 8.0 rocks Assam, India, killing over 1,500 people. History of science and technology * Adolf Erik Nordenskiöld publishes ''Periplus: An Essay on the Early History of Charts and Sailing Directions'' in Stockholm. * Boulton and Watt's Smethwick Engine of 1779 (superseded 1892) is dismantled for preservation by the Birmingham Canal Navigations company, initially at its Ocker Hill depot in the West Midlands of England. Mathematics * David Hilbert unifies the field of algebraic number theory with his treatise ''Zahlbericht''. * John Edward Campbell originates the Baker–Campbell–Hausdorff formula for multiplication of exponentials in Lie algebras. * Raoul Bricard investigates and classifies flexible polyhedra, defining the Br ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hilbert's Theorem 90
In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if ''L''/''K'' is an extension of fields with cyclic Galois group ''G'' = Gal(''L''/''K'') generated by an element \sigma, and if a is an element of ''L'' of relative norm 1, that isN(a):=a\, \sigma(a)\, \sigma^2(a)\cdots \sigma^(a)=1,then there exists b in ''L'' such thata=b/\sigma(b).The theorem takes its name from the fact that it is the 90th theorem in David Hilbert's Zahlbericht , although it is originally due to . Often a more general theorem due to is given the name, stating that if ''L''/''K'' is a finite Galois extension of fields with arbitrary Galois group ''G'' = Gal(''L''/''K''), then the first cohomology group of ''G'', with coefficients in the multiplicative group of ''L'', is trivial: :H^1(G,L^\times)=\. Examples Let L/K be the quad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Mathematics
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars. The earliest mathematical texts available are from Mesopotamia and Egypt – '' Plimpton 322'' ( Babylonian c. 2000 – 1900 BC), the ''Rhind Mathematical Papyrus'' ( Egyptian c. 1800 BC) and the '' Moscow Mathematical Papyrus'' (Egyptian c. 1890 BC). All of these texts mention the so-called Pythagorean triples, so, by inference, the Pythagorean theorem seems to be the most anci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1897 Non-fiction Books
Events January–March * January 2 – The International Alpha Omicron Pi sorority is founded, in New York City. * January 4 – A British force is ambushed by Chief Ologbosere, son-in-law of the ruler. This leads to a punitive expedition against Benin. * January 7 – A cyclone destroys Darwin, Australia. * January 8 – Lady Flora Shaw, future wife of Governor General Lord Lugard, officially proposes the name "Nigeria" in a newspaper contest, to be given to the British Niger Coast Protectorate. * January 22 – In this date's issue of the journal ''Engineering'', the word ''computer'' is first used to refer to a mechanical calculation device. * January 23 – Elva Zona Heaster is found dead in Greenbrier County, West Virginia. The resulting murder trial of her husband is perhaps the only capital case in United States history, where spectral evidence helps secure a conviction. * January 31 – The Czechoslovak Trade Union Association is f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ivor Grattan-Guinness
Ivor Owen Grattan-Guinness (23 June 1941 – 12 December 2014) was a historian of mathematics and logic. Life Grattan-Guinness was born in Bakewell, England; his father was a mathematics teacher and educational administrator. He gained his bachelor degree as a Mathematics Scholar at Wadham College, Oxford, and an MSc (Econ) in Mathematical Logic and the Philosophy of Science at the London School of Economics in 1966. He gained both the doctorate (PhD) in 1969, and higher doctorate (D.Sc.) in 1978, in the History of Science at the University of London. He was Emeritus Professor of the History of Mathematics and Logic at Middlesex University, and a Visiting Research Associate at the London School of Economics. He was awarded the Kenneth O. May Medal for services to the History of Mathematics by the International Commission on the History of Mathematics (ICHM) on 31 July 2009, at Budapest, on the occasion of the 23rd International Congress for the History of Science.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jahresbericht Der Deutschen Mathematiker-Vereinigung
The German Mathematical Society (german: Deutsche Mathematiker-Vereinigung, DMV) is the main professional society of German mathematicians and represents German mathematics within the European Mathematical Society (EMS) and the International Mathematical Union (IMU). It was founded in 1890 in Bremen with the set theorist Georg Cantor as first president. Founding members included Georg Cantor, Felix Klein, Walther von Dyck, David Hilbert, Hermann Minkowski, Carl Runge, Rudolf Sturm, Hermann Schubert, and Heinrich Weber. The current president of the DMV is Ilka Agricola (2021–2022). Activities In honour of its founding president, Georg Cantor, the society awards the Cantor Medal. The DMV publishes two scientific journals, the ''Jahresbericht der DMV'' and ''Documenta Mathematica''. It also publishes a quarterly magazine for its membership the ''Mitteilungen der DMV''. The annual meeting of the DMV is called the ''Jahrestagung''; the DMV traditionally meets e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Prime
In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are: : 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... . History and motivation In 1850, Kummer proved that Fermat's Last Theorem is true for a prime exponent ''p'' if ''p'' is regular. This focused attention on the irregular primes. In 1852, Genocchi was able to prove that the first case of Fermat's Last Theorem is true for an exponent ''p'', if is not an irregular pair. Kummer improved this further in 1857 by showing that for the "first case" of Fermat's Last Theorem (see Sophie Germain's theorem) it is sufficient to establish that either or fails to be an irregular pair. Kummer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kummer Extension
In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of ''n''th roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer ''n'' – and therefore belong to abstract algebra. The theory of cyclic extensions of the field ''K'' when the characteristic of ''K'' does divide ''n'' is called Artin–Schreier theory. Kummer theory is basic, for example, in class field theory and in general in understanding abelian extensions; it says that in the presence of enough roots of unity, cyclic extensions can be understood in terms of extracting roots. The main burden in class field theory is to dispense with extra roots of unity ('descending' back to smaller fields); which is somet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]