Znám's Problem
   HOME





Znám's Problem
In number theory, Znám's problem asks which sets of integers have the property that each integer in the set is a proper divisor of the product of the other integers in the set, plus 1. Znám's problem is named after the Slovak mathematician Štefan Znám, who suggested it in 1972, although other mathematicians had considered similar problems around the same time. The initial terms of Sylvester's sequence almost solve this problem, except that the last chosen term equals one plus the product of the others, rather than being a proper divisor. showed that there is at least one solution to the (proper) Znám problem for each k\ge 5. Sun's solution is based on a recurrence similar to that for Sylvester's sequence, but with a different set of initial values. The Znám problem is closely related to Egyptian fractions. It is known that there are only finitely many solutions for any fixed k. It is unknown whether there are any solutions to Znám's problem using only odd numbers, and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nondeterministic Finite Automata
In automata theory, a finite-state machine is called a deterministic finite automaton (DFA), if * each of its transitions is ''uniquely'' determined by its source state and input symbol, and * reading an input symbol is required for each state transition. A nondeterministic finite automaton (NFA), or nondeterministic finite-state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. Sometimes the term NFA is used in a narrower sense, referring to an NFA that is ''not'' a DFA, but not in this article. Using the subset construction algorithm, each NFA can be translated to an equivalent DFA; i.e., a DFA recognizing the same formal language. Like DFAs, NFAs only recognize regular languages. NFAs were introduced in 1959 by Michael O. Rabin and Dana Scott, who also showed their equivalence to DFAs. NFAs are used in the implementation of regular expressions: Thompson's construction is an algorithm for compiling a regular expression to an NFA that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematics Magazine
''Mathematics Magazine'' is a refereed bimonthly publication of the Mathematical Association of America. Its intended audience is teachers of collegiate mathematics, especially at the junior/senior level, and their students. It is explicitly a journal of mathematics rather than pedagogy. Rather than articles in the terse "theorem-proof" style of research journals, it seeks articles which provide a context for the mathematics they deliver, with examples, applications, illustrations, and historical background. Paid circulation in 2008 was 9,500 and total circulation was 10,000. ''Mathematics Magazine'' is a continuation of ''Mathematics News Letter'' (1926–1934) and ''National Mathematics Magazine'' (1934–1945). Doris Schattschneider became the first female editor of ''Mathematics Magazine'' in 1981. .. The MAA gives the Carl B. Allendoerfer Awards annually "for articles of expository excellence" published in ''Mathematics Magazine''. See also *''American Mathematical Mon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pacific Journal Of Mathematics
The Pacific Journal of Mathematics is a mathematics research journal supported by several universities and research institutes, and currently published on their behalf by Mathematical Sciences Publishers, a non-profit academic publishing organisation, and the University of California, Berkeley. It was founded in 1951 by František Wolf and Edwin F. Beckenbach and has been published continuously since, with five two-issue volumes per year and 12 issues per year. Full-text PDF versions of all journal articles are available on-line via the journal's website with a subscription. The journal is incorporated as a 501(c)(3) organization A 501(c)(3) organization is a United States corporation, Trust (business), trust, unincorporated association or other type of organization exempt from federal income tax under section 501(c)(3) of Title 26 of the United States Code. It is one of .... The 255-page proof of the odd order theorem, by Walter Feit and John Griggs Thompson, was publi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Canadian Mathematical Bulletin
The ''Canadian Mathematical Bulletin'' () is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antonio Lei and Javad Mashreghi. The journal publishes short articles in all areas of mathematics that are of sufficient interest to the general mathematical public. Abstracting and indexing The journal is abstracted in:Abstracting and indexing services
for the Canadian Mathematical Bulletin. * '''' * ''

Primary Pseudoperfect Number
In mathematics, and particularly in number theory, ''N'' is a primary pseudoperfect number if it satisfies the Egyptian fraction equation :\frac + \sum_\frac = 1, where the sum is over only the prime divisors of ''N''. Properties Equivalently, ''N'' is a primary pseudoperfect number if it satisfies :1 + \sum_ \frac = N. Except for the primary pseudoperfect number ''N'' = 2, this expression gives a representation for ''N'' as the sum of distinct divisors of ''N''. Therefore, each primary pseudoperfect number ''N'' (except ''N'' = 2) is also pseudoperfect. The eight known primary pseudoperfect numbers are : 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086 . The first four of these numbers are one less than the corresponding numbers in Sylvester's sequence, but then the two sequences diverge. It is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Giuga Number
In number theory, a Giuga number is a composite number n such that for each of its distinct prime factors p_i we have p_i , \left( - 1\right), or equivalently such that for each of its distinct prime factors ''p''''i'' we have p_i^2 , (n - p_i). The Giuga numbers are named after the mathematician Giuseppe Giuga, and relate to his conjecture on primality. Definitions Alternative definition for a Giuga number due to Takashi Agoh is: a composite number ''n'' is a Giuga number if and only if the congruence :nB_ \equiv -1 \pmod n holds true, where ''B'' is a Bernoulli number and \varphi(n) is Euler's totient function. An equivalent formulation due to Giuseppe Giuga is: a composite number ''n'' is a Giuga number if and only if the congruence :\sum_^ i^ \equiv -1 \pmod n and if and only if :\sum_ \frac - \prod_ \frac \in \mathbb. All known Giuga numbers ''n'' in fact satisfy the stronger condition :\sum_ \frac - \prod_ \frac = 1. Examples The sequence of Giuga numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primary Pseudoperfect Number
In mathematics, and particularly in number theory, ''N'' is a primary pseudoperfect number if it satisfies the Egyptian fraction equation :\frac + \sum_\frac = 1, where the sum is over only the prime divisors of ''N''. Properties Equivalently, ''N'' is a primary pseudoperfect number if it satisfies :1 + \sum_ \frac = N. Except for the primary pseudoperfect number ''N'' = 2, this expression gives a representation for ''N'' as the sum of distinct divisors of ''N''. Therefore, each primary pseudoperfect number ''N'' (except ''N'' = 2) is also pseudoperfect. The eight known primary pseudoperfect numbers are : 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086 . The first four of these numbers are one less than the corresponding numbers in Sylvester's sequence, but then the two sequences diverge. It is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter "M" first and "Y" last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be '' finite'', as in these examples, or '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Resolution of conjectures Proof Formal mathematics is based on ''provable'' truth. In mathematics, any number of cases supporting a universally quantified conjecture, no matter how large, is insufficient for establishing the conjecture's veracity, since a single counterexample could immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 101 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

96 (number)
96 (ninety-six) is the natural number following 95 (number), 95 and preceding 97 (number), 97. It is a number that Strobogrammatic number, appears the same when rotated by 180 degrees. In mathematics 96 is: * an octagonal number. * a refactorable number. * an untouchable number. * a semiperfect number since it is a multiple of 6. * an abundant number since the sum of its proper divisors is greater than 96. * the fourth Granville number and the second non-perfect Granville number. The next Granville number is 126 (number), 126, the previous being 24 (number), 24. * the sum of Euler's totient function φ(''x'') over the first seventeen integers. * Strobogrammatic number, strobogrammatic in bases 10 (9610), 11 (8811) and 95 (1195). * Palindromic number, palindromic in bases 11 (8811), 15 (6615), 23 (4423), 31 (3331), 47 (2247) and 95 (1195). * an Erdős–Woods number, since it is possible to find sequences of 96 consecutive integers such that each inner member shares a factor with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]