HOME
*



picture info

Zemor's Decoding Algorithm
In coding theory, Zemor's algorithm, designed and developed by Gilles Zemor, is a recursive low-complexity approach to code construction. It is an improvement over the algorithm of Sipser and Spielman. Zemor considered a typical class of Sipser–Spielman construction of expander codes, where the underlying graph is bipartite graph. Sipser and Spielman introduced a constructive family of asymptotically good linear-error codes together with a simple parallel algorithm that will always remove a constant fraction of errors. The article is based on Dr. Venkatesan Guruswami's course notes http://www.cs.washington.edu/education/courses/cse590vg/03wi/scribes/1-27.ps Code construction Zemor's algorithm is based on a type of expander graphs called Tanner graph. The construction of code was first proposed by Tanner. The codes are based on double cover d, regular expander G, which is a bipartite graph. G = \left(V,E\right), where V is the set of vertices and E is the set of edges an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coding Theory
Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied by various scientific disciplines—such as information theory, electrical engineering, mathematics, linguistics, and computer science—for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data. There are four types of coding: # Data compression (or ''source coding'') # Error control (or ''channel coding'') # Cryptographic coding # Line coding Data compression attempts to remove unwanted redundancy from the data from a source in order to transmit it more efficiently. For example, ZIP data compression makes data files smaller, for purposes such as to reduce Internet traffic. Data compression a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalue
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Time Encoding And Decoding Of Error-correcting Codes
Linearity is the property of a mathematical relationship (''function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear relationship of voltage and current in an electrical conductor (Ohm's law), and the relationship of mass and weight. By contrast, more complicated relationships are ''nonlinear''. Generalized for functions in more than one dimension, linearity means the property of a function of being compatible with addition and scaling, also known as the superposition principle. The word linear comes from Latin ''linearis'', "pertaining to or resembling a line". In mathematics In mathematics, a linear map or linear function ''f''(''x'') is a function that satisfies the two properties: * Additivity: . * Homogeneity of degree 1: for all α. These properties are known as the superposition principle. In this definition, ''x'' is not necessarily a real nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expander Code
In coding theory, expander codes form a class of error-correcting codes that are constructed from bipartite expander graphs. Along with Justesen codes, expander codes are of particular interest since they have a constant positive rate, a constant positive relative distance, and a constant alphabet size. In fact, the alphabet contains only two elements, so expander codes belong to the class of binary codes. Furthermore, expander codes can be both encoded and decoded in time proportional to the block length of the code. Expander codes In coding theory, an expander code is a ,n-m2\, linear block code whose parity check matrix is the adjacency matrix of a bipartite expander graph. These codes have good relative distance 2(1-\varepsilon)\gamma\,, where \varepsilon\, and \gamma\, are properties of the expander graph as defined later), rate \left(1-\tfrac\right)\,, and decodability (algorithms of running time O(n)\, exist). Definition Let B be a (c,d)-biregular graph between a se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Series
In mathematics, a geometric series is the sum of an infinite number of terms that have a constant ratio between successive terms. For example, the series :\frac \,+\, \frac \,+\, \frac \,+\, \frac \,+\, \cdots is geometric, because each successive term can be obtained by multiplying the previous term by 1/2. In general, a geometric series is written as a + ar + ar^2 + ar^3 + ..., where a is the coefficient of each term and r is the common ratio between adjacent terms. The geometric series had an important role in the early development of calculus, is used throughout mathematics, and can serve as an introduction to frequently used mathematical tools such as the Taylor series, the complex Fourier series, and the matrix exponential. The name geometric series indicates each term is the geometric mean of its two neighboring terms, similar to how the name arithmetic series indicates each term is the arithmetic mean of its two neighboring terms. The sequence of geometric series term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ramanujan Graph
In the mathematical field of spectral graph theory, a Ramanujan graph is a regular graph whose spectral gap is almost as large as possible (see extremal graph theory). Such graphs are excellent spectral expanders. AMurty's survey papernotes, Ramanujan graphs "fuse diverse branches of pure mathematics, namely, number theory, representation theory, and algebraic geometry". These graphs are indirectly named after Srinivasa Ramanujan; their name comes from the Ramanujan–Petersson conjecture, which was used in a construction of some of these graphs. Definition Let G be a connected d-regular graph with n vertices, and let \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n be the eigenvalues of the adjacency matrix of G (or the spectrum of G). Because G is connected and d-regular, its eigenvalues satisfy d = \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq -d . Define \lambda(G) = \max_, \lambda_i, = \max(, \lambda_2, , , \lambda_n, ). A connected d-regular graph G is a ''Ram ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Mathematics (journal)
''Discrete Mathematics'' is a biweekly peer-reviewed scientific journal in the broad area of discrete mathematics, combinatorics, graph theory, and their applications. It was established in 1971 and is published by North-Holland Publishing Company. It publishes both short notes, full length contributions, as well as survey articles. In addition, the journal publishes a number of special issues each year dedicated to a particular topic. Although originally it published articles in French and German, it now allows only English language articles. The editor-in-chief is Douglas West ( University of Illinois, Urbana). History The journal was established in 1971. The very first article it published was written by Paul Erdős, who went on to publish a total of 84 papers in the journal. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.87. Notable publications * The 1972 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adjacency Matrix
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory. The adjacency matrix of a graph should be distinguished from its incidence matrix, a different matrix representation whose elements indicate whether vertex–edge pairs are incident or not, and its degree matrix, which contains information about the degree of each vertex. Definition For a simple graph with vertex set , the adjacency matrix is a square matrix such that its element is one when there is an edge from vertex to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael Sipser
Michael Fredric Sipser (born September 17, 1954) is an American theoretical computer scientist who has made early contributions to computational complexity theory. He is a professor of applied mathematics and was the Dean of Science at the Massachusetts Institute of Technology. Biography Sipser was born and raised in Brooklyn, New York and moved to Oswego, New York when he was 12 years old. He earned his BA in mathematics from Cornell University in 1974 and his PhD in engineering from the University of California at Berkeley in 1980 under the direction of Manuel Blum.Trafton, Anne"Michael Sipser named dean of the School of Science: Sipser has served as interim dean since Marc Kastner’s departure" MIT News Office, June 5, 2014 He joined MIT's Laboratory for Computer Science as a research associate in 1979 and then was a Research Staff Member at IBM Research in San Jose. In 1980, he joined the MIT faculty. He spent the 1985-1986 academic year on the faculty of the Uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Double Cover (topology)
A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete space D and for every x \in X an open neighborhood U \subset X, such that \pi^(U)= \displaystyle \bigsqcup_ V_d and \pi, _:V_d \rightarrow U is a homeomorphism for every d \in D . Often, the notion of a covering is used for the covering space E as well as for the map \pi : E \rightarrow X. The open sets V_ are called sheets, which are uniquely determined up to a homeomorphism if U is connected. For each x \in X the discrete subset \pi^(x) is called the fiber of x. The degree of a covering is the cardinality of the space D. If E is path-connected, then the covering \pi : E \rightarrow X is denoted as a path-connected covering. Examples * For every topological space X there exists the covering \pi:X \rightarrow X with \pi(x)=x, which i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]