Xnor
The XNOR gate (sometimes XORN'T, ENOR, EXNOR or NXOR and pronounced as Exclusive NOR. Alternatively XAND, pronounced Exclusive AND) is a digital logic gate whose function is the logical complement of the Exclusive OR (XOR) gate. It is equivalent to the logical connective (\leftrightarrow) from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results. The algebraic notation used to represent the XNOR operation is S = A \odot B. The algebraic expressions (A + \overline) \cdot (\overline + B) and A \cdot B + \overline A \cdot \overline B both represent the XNOR gate with inputs ''A'' and ''B''. Symbols There are two symbols for XNOR gates: one with distinctive shape and one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logic Gate
A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see Ideal and real op-amps for comparison). Logic gates are primarily implemented using diodes or transistors acting as electronic switches, but can also be constructed using vacuum tubes, electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements. Now, most logic gates are made from MOSFETs (metal–oxide–semiconductor field-effect transistors). With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of Boolean logic, and therefore, all of the algorithms and mathem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual In-line Package
In microelectronics, a dual in-line package (DIP or DIL), is an electronic component package with a rectangular housing and two parallel rows of electrical connecting pins. The package may be through-hole mounted to a printed circuit board (PCB) or inserted in a socket. The dual-inline format was invented by Don Forbes, Rex Rice and Bryant Rogers at Fairchild R&D in 1964, when the restricted number of leads available on circular transistor-style packages became a limitation in the use of integrated circuits. Increasingly complex circuits required more signal and power supply leads (as observed in Rent's rule); eventually microprocessors and similar complex devices required more leads than could be put on a DIP package, leading to development of higher-density chip carriers. Furthermore, square and rectangular packages made it easier to route printed-circuit traces beneath the packages. A DIP is usually referred to as a DIP''n'', where ''n'' is the total number of pins. For e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AND Gate
The AND gate is a basic digital logic gate that implements logical conjunction (∧) from mathematical logic AND gate behaves according to the truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If not all inputs to the AND gate are HIGH, LOW output results. The function can be extended to any number of inputs. Symbols There are three symbols for AND gates: the American (ANSI or 'military') symbol and the IEC ('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. Additional inputs can be added as needed. For more information see Logic gate symbols article. It can also be denoted as symbol "^" or "&". The AND gate with inputs ''A'' and ''B'' and output ''C'' implements the logical expression C = A \cdot B. This expression also may be denoted as C=A \wedge B or C=A \And B. Implementations An AND gate can be designed using only N-channel (pictured) or P-channel MOSFETs, but is usually implemented with both (CMOS). ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Operators
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary operation ''on a set'' is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups. An operation of arity two that involves several sets is sometimes also called a ''binary operation''. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Such binary operations may be called simply binary functions. Binary operations are the keystone of most algebraic structures that are studied in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logic Gate
A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see Ideal and real op-amps for comparison). Logic gates are primarily implemented using diodes or transistors acting as electronic switches, but can also be constructed using vacuum tubes, electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements. Now, most logic gates are made from MOSFETs (metal–oxide–semiconductor field-effect transistors). With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of Boolean logic, and therefore, all of the algorithms and mathem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
XNOR From NOR 2
The XNOR gate (sometimes XORN'T, ENOR, EXNOR or NXOR and pronounced as Exclusive NOR. Alternatively XAND, pronounced Exclusive AND) is a digital logic gate whose function is the logical complement of the Exclusive OR (XOR gate, XOR) gate. It is equivalent to the logical connective (\leftrightarrow) from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results. The Boolean algebra, algebraic notation used to represent the XNOR operation is S = A \odot B. The algebraic expressions (A + \overline) \cdot (\overline + B) and A \cdot B + \overline A \cdot \overline B both represent the XNOR gate with inputs ''A'' and ''B''. Symbols There are logic gate#Symbols, two symbols for XN ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
XNOR From NAND 2
The XNOR gate (sometimes XORN'T, ENOR, EXNOR or NXOR and pronounced as Exclusive NOR. Alternatively XAND, pronounced Exclusive AND) is a digital logic gate whose function is the logical complement of the Exclusive OR (XOR) gate. It is equivalent to the logical connective (\leftrightarrow) from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results. The algebraic notation used to represent the XNOR operation is S = A \odot B. The algebraic expressions (A + \overline) \cdot (\overline + B) and A \cdot B + \overline A \cdot \overline B both represent the XNOR gate with inputs ''A'' and ''B''. Symbols There are two symbols for XNOR gates: one with distinctive shape and one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
XNOR From NOR
The XNOR gate (sometimes XORN'T, ENOR, EXNOR or NXOR and pronounced as Exclusive NOR. Alternatively XAND, pronounced Exclusive AND) is a digital logic gate whose function is the logical complement of the Exclusive OR (XOR gate, XOR) gate. It is equivalent to the logical connective (\leftrightarrow) from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results. The Boolean algebra, algebraic notation used to represent the XNOR operation is S = A \odot B. The algebraic expressions (A + \overline) \cdot (\overline + B) and A \cdot B + \overline A \cdot \overline B both represent the XNOR gate with inputs ''A'' and ''B''. Symbols There are logic gate#Symbols, two symbols for XN ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
XNOR From NAND
The XNOR gate (sometimes XORN'T, ENOR, EXNOR or NXOR and pronounced as Exclusive NOR. Alternatively XAND, pronounced Exclusive AND) is a digital logic gate whose function is the logical complement of the Exclusive OR (XOR gate, XOR) gate. It is equivalent to the logical connective (\leftrightarrow) from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results. The Boolean algebra, algebraic notation used to represent the XNOR operation is S = A \odot B. The algebraic expressions (A + \overline) \cdot (\overline + B) and A \cdot B + \overline A \cdot \overline B both represent the XNOR gate with inputs ''A'' and ''B''. Symbols There are logic gate#Symbols, two symbols for XN ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
XNOR ANSI Labelled
The XNOR gate (sometimes XORN'T, ENOR, EXNOR or NXOR and pronounced as Exclusive NOR. Alternatively XAND, pronounced Exclusive AND) is a digital logic gate whose function is the logical complement of the Exclusive OR (XOR) gate. It is equivalent to the logical connective (\leftrightarrow) from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results. The algebraic notation used to represent the XNOR operation is S = A \odot B. The algebraic expressions (A + \overline) \cdot (\overline + B) and A \cdot B + \overline A \cdot \overline B both represent the XNOR gate with inputs ''A'' and ''B''. Symbols There are two symbols for XNOR gates: one with distinctive shape and one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |