Wythoff Array
   HOME
*





Wythoff Array
In mathematics, the Wythoff array is an infinite matrix of integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array. The Wythoff array was first defined by using Wythoff pairs, the coordinates of winning positions in Wythoff's game. It can also be defined using Fibonacci numbers and Zeckendorf's theorem, or directly from the golden ratio and the recurrence relation defining the Fibonacci numbers. Values The Wythoff array has the values :\begin 1&2&3&5&8&13&21&\cdots\\ 4&7&11&18&29&47&76&\cdots\\ 6&10&16&26&42&68&110&\cdots\\ 9&15&24&39&63&102&165&\cdots\\ 12&20&32&52&84&136&220&\cdots\\ 14&23&37&60&97&157&254&\cdots\\ 17&28&45&73&118&191&309&\cdots\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\ddots\\ \end . Equivalent definitions Inspired by a similar Stolars ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Sequence
In mathematics, the Fibonacci numbers, commonly denoted , form a integer sequence, sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The Fibonacci numbers were first described in Indian mathematics, as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, later known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book ''Liber Abaci''. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the ''Fibonacci Quarterly''. Applications of Fibonacci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Willem Abraham Wythoff
Willem Abraham Wythoff, born Wijthoff (), (6 October 1865 – 21 May 1939) was a Dutch mathematician. Biography Wythoff was born in Amsterdam to Anna C. F. Kerkhoven and Abraham Willem Wijthoff, who worked in a sugar refinery.. He studied at the University of Amsterdam, and earned his Ph.D. in 1898 under the supervision of Diederik Korteweg. Contributions Wythoff is known in combinatorial game theory and number theory for his study of Wythoff's game, whose solution involves the Fibonacci numbers. The Wythoff array, a two-dimensional array of numbers related to this game and to the Fibonacci sequence, is also named after him.. In geometry, Wythoff is known for the Wythoff construction of uniform tilings and uniform polyhedra In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also ... and f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wythoff's Game
Wythoff's game is a two-player mathematical subtraction game, played with two piles of counters. Players take turns removing counters from one or both piles; when removing counters from both piles, the numbers of counters removed from each pile must be equal. The game ends when one player removes the last counter or counters, thus winning. An equivalent description of the game is that a single chess queen is placed somewhere on a large grid of squares, and each player can move the queen towards the lower left corner of the grid: south, west, or southwest, any number of steps. The winner is the player who moves the queen into the corner. The two Cartesian coordinates of the queen correspond to the sizes of two piles in the formulation of the game involving removing counters from piles. Martin Gardner in his March 1977 "Mathematical Games column" in ''Scientific American'' claims that the game was played in China under the name 捡石子 ''jiǎn shízǐ'' ("picking stones"). The D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Number
In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The Fibonacci numbers were first described in Indian mathematics, as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, later known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book ''Liber Abaci''. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the ''Fibonacci Quarterly''. Applications of Fibonacci numbers include co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zeckendorf's Theorem
In mathematics, Zeckendorf's theorem, named after Belgian amateur mathematician Edouard Zeckendorf, is a theorem about the representation of integers as sums of Fibonacci numbers. Zeckendorf's theorem states that every positive integer can be represented uniquely as the sum of ''one or more'' distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers. More precisely, if is any positive integer, there exist positive integers , with , such that :N = \sum_^k F_, where is the th Fibonacci number. Such a sum is called the Zeckendorf representation of . The Fibonacci coding of can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is :. There are other ways of representing 64 as the sum of Fibonacci numbers : : : : but these are not Zeckendorf representations because 34 and 21 are consecutive Fibonacci numbers, as are 5 and 3. For any given positive integer, its Zeckendorf r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Golden Ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( or \phi) denotes the golden ratio. The constant \varphi satisfies the quadratic equation \varphi^2 = \varphi + 1 and is an irrational number with a value of The golden ratio was called the extreme and mean ratio by Euclid, and the divine proportion by Luca Pacioli, and also goes by several other names. Mathematicians have studied the golden ratio's properties since antiquity. It is the ratio of a regular pentagon's diagonal to its side and thus appears in the construction of the dodecahedron and icosahedron. A golden rectangle—that is, a rectangle with an aspect ratio of \varphi—may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beatty Sequence
In mathematics, a Beatty sequence (or homogeneous Beatty sequence) is the sequence of integers found by taking the floor of the positive multiples of a positive irrational number. Beatty sequences are named after Samuel Beatty, who wrote about them in 1926. Rayleigh's theorem, named after Lord Rayleigh, states that the complement of a Beatty sequence, consisting of the positive integers that are not in the sequence, is itself a Beatty sequence generated by a different irrational number. Beatty sequences can also be used to generate Sturmian words. Definition Any irrational number r that is greater than one generates the Beatty sequence \mathcal_r = \lfloor r \rfloor, \lfloor 2r \rfloor, \lfloor 3r \rfloor,\ldots The two irrational numbers r and s = r/(r-1) naturally satisfy the equation 1/r + 1/s = 1. The two Beatty sequences \mathcal_r and \mathcal_s that they generate form a ''pair of complementary Beatty sequences''. Here, "complementary" means that every positive integer b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lucas Number
The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences. The Lucas series has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio. The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. The first few Lucas numbers are : 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349 .... Defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]