Woodin Cardinal
   HOME
*





Woodin Cardinal
In set theory, a Woodin cardinal (named for W. Hugh Woodin) is a cardinal number \lambda such that for all functions :f : \lambda \to \lambda there exists a cardinal \kappa < \lambda with : \ \subseteq \kappa and an :j : V \to M from the V into a transitive M with critical point \kappa and :V_ \subseteq M. An equivalent definition is this: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Determinacy
In mathematical logic, projective determinacy is the special case of the axiom of determinacy applying only to projective sets. The axiom of projective determinacy, abbreviated PD, states that for any two-player infinite game of perfect information of length ω in which the players play natural numbers, if the victory set (for either player, since the projective sets are closed under complementation) is projective, then one player or the other has a winning strategy. The axiom is not a theorem of ZFC (assuming ZFC is consistent), but unlike the full axiom of determinacy (AD), which contradicts the axiom of choice, it is not known to be inconsistent with ZFC. PD follows from certain large cardinal axioms, such as the existence of infinitely many Woodin cardinals. PD implies that all projective sets are Lebesgue measurable (in fact, universally measurable) and have the perfect set property and the property of Baire A subset A of a topological space X has the property of Baire ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Saharon Shelah
Saharon Shelah ( he, שהרן שלח; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, 1945. He is the son of the Israeli poet and political activist Yonatan Ratosh. He received his PhD for his work on stable theories in 1969 from the Hebrew University. Shelah is married to Yael, and has three children. His brother, magistrate judge Hamman Shelah was murdered along with his wife and daughter by an Egyptian soldier in the Ras Burqa massacre in 1985. Shelah planned to be a scientist while at primary school, but initially was attracted to physics and biology, not mathematics. Later he found mathematical beauty in studying geometry: He said, "But when I reached the ninth grade I began studying geometry and my eyes opened to that beauty—a system of demonstration and theorems based on a very small number of axioms which impr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Continuum Hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to the following equation in aleph numbers: 2^=\aleph_1, or even shorter with beth numbers: \beth_1 = \aleph_1. The continuum hypothesis was advanced by Georg Cantor in 1878, and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being consistent if and only if ZFC is consistent. This independence was proved in 1963 by Paul Cohen, complementing earlier work by Kurt Gödel in 1940. The name of the hypothesis comes from the term '' the continuum'' for the real numbers. History Cantor believed the continuum hypothesis to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Diamond Principle
In mathematics, and particularly in axiomatic set theory, the diamond principle is a combinatorial principle introduced by Ronald Jensen in that holds in the constructible universe () and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the axiom of constructibility () implies the existence of a Suslin tree. Definitions The diamond principle says that there exists a , a family of sets for such that for any subset of ω1 the set of with is stationary in . There are several equivalent forms of the diamond principle. One states that there is a countable collection of subsets of for each countable ordinal such that for any subset of there is a stationary subset of such that for all in we have and . Another equivalent form states that there exist sets for such that for any subset of there is at least one infinite with . More generally, for a given cardinal number and a stationary set , the statement (some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Θ (set Theory)
In set theory, Θ (pronounced like the letter theta) is the least nonzero ordinal α such that there is no surjection from the reals onto α. If the axiom of choice (AC) holds (or even if the reals can be wellordered), then Θ is simply (2^)^+, the cardinal successor of the cardinality of the continuum. However, Θ is often studied in contexts where the axiom of choice fails, such as models of the axiom of determinacy. Θ is also the supremum of the lengths of all prewellorderings of the reals. Proof of existence It may not be obvious that it can be proven, without using AC, that there even exists a nonzero ordinal onto which there is no surjection from the reals (if there is such an ordinal, then there must be a least one because the ordinals are wellordered). However, suppose there were no such ordinal. Then to every ordinal α we could associate the set of all prewellorderings of the reals having length α. This would give an injection from the class of all ordinals into ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Dependent Choice
In mathematics, the axiom of dependent choice, denoted by \mathsf , is a weak form of the axiom of choice ( \mathsf ) that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis."The foundation of analysis does not require the full generality of set theory but can be accomplished within a more restricted frame." The axiom of dependent choice is stated on p. 86. Formal statement A homogeneous relation R on X is called a total relation if for every a \in X, there exists some b \in X such that a\,R~b is true. The axiom of dependent choice can be stated as follows: For every nonempty set X and every total relation R on X, there exists a sequence (x_n)_ in X such that :x_n\, R~x_ for all n \in \N. ''x''0 may be taken to be any desired element of ''X''. If the set X above is restricted to be the set of all real numbers, then the resulting axiom is deno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Determinacy
In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game of a certain type is determined; that is, one of the two players has a winning strategy. Steinhaus and Mycielski's motivation for AD was its interesting consequences, and suggested that AD could be true in the smallest natural model L(R) of a set theory, which accepts only a weak form of the axiom of choice (AC) but contains all real and all ordinal numbers. Some consequences of AD followed from theorems proved earlier by Stefan Banach and Stanisław Mazur, and Morton Davis. Mycielski and Stanisław Świerczkowski contributed another one: AD implies that all sets of real numbers are Lebesgue measurable. Later Donald A. Martin and others proved more important consequences, especially in descriptive set theory. In 1988, John R. Steel an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zermelo–Fraenkel Set Theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from containing u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Set
In general topology, a subset of a topological space is perfect if it is closed and has no isolated points. Equivalently: the set S is perfect if S=S', where S' denotes the set of all Limit point, limit points of S, also known as the derived set of S. In a perfect set, every point can be approximated arbitrarily well by other points from the set: given any point of S and any neighborhood of the point, there is another point of S that lies within the neighborhood. Furthermore, any point of the space that can be so approximated by points of S belongs to S. Note that the term ''perfect space'' is also used, incompatibly, to refer to other properties of a topological space, such as being a Gδ space. As another possible source of confusion, also note that having the perfect set property is not the same as being a perfect set. Examples Examples of perfect subsets of the real line \mathbb are the empty set, all closed intervals, the real line itself, and the Cantor set. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Set Property
In descriptive set theory, a subset of a Polish space has the perfect set property if it is either countable or has a nonempty perfect subset (Kechris 1995, p. 150). Note that having the perfect set property is not the same as being a perfect set. As nonempty perfect sets in a Polish space always have the cardinality of the continuum, and the reals form a Polish space, a set of reals with the perfect set property cannot be a counterexample to the continuum hypothesis, stated in the form that every uncountable set of reals has the cardinality of the continuum. The Cantor–Bendixson theorem states that closed sets of a Polish space ''X'' have the perfect set property in a particularly strong form: any closed subset of ''X'' may be written uniquely as the disjoint union of a perfect set and a countable set. In particular, every uncountable Polish space has the perfect set property, and can be written as the disjoint union of a perfect set and a countable open set. The axi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nowhere Dense Set
In mathematics, a subset of a topological space is called nowhere dense or rare if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered (as defined by the topology on the space) anywhere. For example, the integers are nowhere dense among the reals, whereas an open ball is not. A countable union of nowhere dense sets is called a meagre set. Meagre sets play an important role in the formulation of the Baire category theorem, which is used in the proof of several fundamental result of functional analysis. Definition Density nowhere can be characterized in different (but equivalent) ways. The simplest definition is the one from density: A subset S of a topological space X is said to be ''dense'' in another set U if the intersection S \cap U is a dense subset of U. S is or in X if S is not dense in any nonempty open subset U of X. Expanding out the negation of density, it is equivalent to require that each nonempty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]