Whitehead's Problem
   HOME
*





Whitehead's Problem
In group theory, a branch of abstract algebra, the Whitehead problem is the following question: Saharon Shelah proved that Whitehead's problem is independent of ZFC, the standard axioms of set theory. Refinement Assume that ''A'' is an abelian group such that every short exact sequence :0\rightarrow\mathbb\rightarrow B\rightarrow A\rightarrow 0 must split if ''B'' is also abelian. The Whitehead problem then asks: must ''A'' be free? This splitting requirement is equivalent to the condition Ext1(''A'', Z) = 0. Abelian groups ''A'' satisfying this condition are sometimes called Whitehead groups, so Whitehead's problem asks: is every Whitehead group free? It should be mentioned that if this condition is strengthened by requiring that the exact sequence :0\rightarrow C\rightarrow B\rightarrow A\rightarrow 0 must split for any abelian group ''C'', then it is well known that this is equivalent to ''A'' being free. ''Caution'': The converse of Whitehead's problem, namely that eve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second Cousin Problem
In mathematics, the Cousin problems are two questions in several complex variables, concerning the existence of meromorphic functions that are specified in terms of local data. They were introduced in special cases by Pierre Cousin in 1895. They are now posed, and solved, for any complex manifold ''M'', in terms of conditions on ''M''. For both problems, an open cover of ''M'' by sets ''Ui'' is given, along with a meromorphic function ''fi'' on each ''Ui''. First Cousin problem The first Cousin problem or additive Cousin problem assumes that each difference :f_i-f_j is a holomorphic function, where it is defined. It asks for a meromorphic function ''f'' on ''M'' such that :f-f_i is ''holomorphic'' on ''Ui''; in other words, that ''f'' shares the singular behaviour of the given local function. The given condition on the f_i-f_j is evidently ''necessary'' for this; so the problem amounts to asking if it is sufficient. The case of one variable is the Mittag-Leffler theorem on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independence Results
Independence is a condition of a person, nation, country, or state in which residents and population, or some portion thereof, exercise self-government, and usually sovereignty, over its territory. The opposite of independence is the status of a dependent territory. The commemoration of the independence day of a country or nation celebrates when a country is free from all forms of foreign colonialism; free to build a country or nation without any interference from other nations. Definition of independence Whether the attainment of independence is different from revolution has long been contested, and has often been debated over the question of violence as legitimate means to achieving sovereignty. In general, revolutions aim only to redistribute power with or without an element of emancipation,such as in democratization ''within'' a state, which as such may remain unaltered. For example, the Mexican Revolution (1910) chiefly refers to a multi-factional conflict that even ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem (Magnes Press). Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... was 0.754. External links * Mathematics journals Publications established in 1963 English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Statements Undecidable In ZFC
The mathematical statements discussed below are independent of ZFC (the canonical axiomatic set theory of contemporary mathematics, consisting of the Zermelo–Fraenkel axioms plus the axiom of choice), assuming that ZFC is consistent. A statement is independent of ZFC (sometimes phrased "undecidable in ZFC") if it can neither be proven nor disproven from the axioms of ZFC. Axiomatic set theory In 1931, Kurt Gödel proved the first ZFC independence result, namely that the consistency of ZFC itself was independent of ZFC ( Gödel's second incompleteness theorem). The following statements are independent of ZFC, among others: * the consistency of ZFC; * the continuum hypothesis or CH (Gödel produced a model of ZFC in which CH is true, showing that CH cannot be disproven in ZFC; Paul Cohen later invented the method of forcing to exhibit a model of ZFC in which CH fails, showing that CH cannot be proven in ZFC. The following four independence results are also due to Gödel/Cohen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Whitehead Torsion
In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence f\colon X \to Y of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion \tau(f) which is an element in the Whitehead group \operatorname(\pi_1(Y)). These concepts are named after the mathematician J. H. C. Whitehead. The Whitehead torsion is important in applying surgery theory to non- simply connected manifolds of dimension > 4: for simply-connected manifolds, the Whitehead group vanishes, and thus homotopy equivalences and simple homotopy equivalences are the same. The applications are to differentiable manifolds, PL manifolds and topological manifolds. The proofs were first obtained in the early 1960s by Stephen Smale, for differentiable manifolds. The development of handlebody theory allowed much the same proofs in the differentiable and PL categories. The proofs are much harder in the topological category, requiring the theory of Robion Kirby and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Abelian Group
In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors. The elements of a free abelian group with basis B may be described in several equivalent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Constructible Universe
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy . It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result. What is can be thought of as being built in "stages" resembling the constr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite comm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consistency
In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term ''satisfiable'' is used instead. The syntactic definition states a theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when \varphi, \lnot \varphi \in \langle A \rangle for no formula \varphi. If there e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]