Whitehead's Lemma (Lie Algebras)
   HOME
*





Whitehead's Lemma (Lie Algebras)
In homological algebra, Whitehead's lemmas (named after J. H. C. Whitehead) represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology. One usually makes the distinction between Whitehead's first and second lemma for the corresponding statements about first and second order cohomology, respectively, but there are similar statements pertaining to Lie algebra cohomology in arbitrary orders which are also attributed to Whitehead. The first Whitehead lemma is an important step toward the proof of Weyl's theorem on complete reducibility. Statements Without mentioning cohomology groups, one can state Whitehead's first lemma as follows: Let \mathfrak be a finite-dimensional, semisimple Lie algebra over a field of characteristic zero, ''V'' a finite-dimensional module over it, and f\colon \mathfrak \to V a linear map such that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other 'tan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra Representation
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space V together with a collection of operators on V satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators. The notion is closely related to that of a representation of a Lie group. Roughly speaking, the representations of Lie algebras are the differentiated form of representations of Lie groups, while the representations of the universal cover of a Lie group are the integrated form of the representations of its Lie algebra. In the study of representations of a Lie algebra, a particular ring, called the universal enveloping algebra, associated with the Lie algebra plays an important role. The universa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable ideals; * the radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable ideal (its radical) and a semisimple algebra. In particular, there is no nonzero Lie algebra that is both solvable and semisimple. Semisimple L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra Cohomology
In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by to coefficients in an arbitrary Lie module. Motivation If G is a compact simply connected Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra. This can be done as follows. Its cohomology is the de Rham cohomology of the complex of differential forms on G. Using an averaging process, this complex can be replaced by the complex of left-invariant differential forms. The left-invariant forms, meanwhile, are determined by their values at the identity, so that the space of left-invariant differential forms can be identified with the exterior algebra of the Lie algebra, with a suitable differential. The construction of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl's Theorem On Complete Reducibility
In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let \mathfrak be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over \mathfrak is semisimple as a module (i.e., a direct sum of simple modules.) The enveloping algebra is semisimple Weyl's theorem implies (in fact is equivalent to) that the enveloping algebra of a finite-dimensional representation is a semisimple ring in the following way. Given a finite-dimensional Lie algebra representation \pi: \mathfrak \to \mathfrak(V), let A \subset \operatorname(V) be the associative subalgebra of the endomorphism algebra of ''V'' generated by \pi(\mathfrak g). The ring ''A'' is called the enveloping algebra of \pi. If \pi is semisimple, then ''A'' is semisimple. (Proof: Since ''A'' is a finite-dimensional algebra, it is an Artini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lie Algebra Representation
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space V together with a collection of operators on V satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators. The notion is closely related to that of a representation of a Lie group. Roughly speaking, the representations of Lie algebras are the differentiated form of representations of Lie groups, while the representations of the universal cover of a Lie group are the integrated form of the representations of its Lie algebra. In the study of representations of a Lie algebra, a particular ring, called the universal enveloping algebra, associated with the Lie algebra plays an important role. The universa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Casimir Element
In mathematics, a Casimir element (also known as a Casimir invariant or Casimir operator) is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group. The Casimir element is named after Hendrik Casimir, who identified them in his description of rigid body dynamics in 1931. Definition The most commonly-used Casimir invariant is the quadratic invariant. It is the simplest to define, and so is given first. However, one may also have Casimir invariants of higher order, which correspond to homogeneous symmetric polynomials of higher order. Quadratic Casimir element Suppose that \mathfrak is an n-dimensional Lie algebra. Let ''B'' be a nondegenerate bilinear form on \mathfrak that is invariant under the adjoint action of \mathfrak on itself, meaning that B(\operatorname_XY, Z) + B(Y, \operatorname_X Z) = 0 for all ''X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fitting's Lemma
The Fitting lemma, named after the mathematician Hans Fitting, is a basic statement in abstract algebra. Suppose ''M'' is a module over some ring. If ''M'' is indecomposable and has finite length, then every endomorphism of ''M'' is either an automorphism or nilpotent. As an immediate consequence, we see that the endomorphism ring of every finite-length indecomposable module is local. A version of Fitting's lemma is often used in the representation theory of groups. This is in fact a special case of the version above, since every ''K''-linear representation of a group ''G'' can be viewed as a module over the group algebra ''KG''. Proof To prove Fitting's lemma, we take an endomorphism ''f'' of ''M'' and consider the following two sequences of submodules: * The first sequence is the descending sequence \mathrm(f) \supseteq \mathrm(f^2) \supseteq \mathrm(f^3) \ldots, * the second sequence is the ascending sequence \mathrm(f) \subseteq \mathrm(f^2) \subseteq \mathrm(f^3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent Endomorphism
In linear algebra, a nilpotent matrix is a square matrix ''N'' such that :N^k = 0\, for some positive integer k. The smallest such k is called the index of N, sometimes the degree of N. More generally, a nilpotent transformation is a linear transformation L of a vector space such that L^k = 0 for some positive integer k (and thus, L^j = 0 for all j \geq k). Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings. Examples Example 1 The matrix : A = \begin 0 & 1 \\ 0 & 0 \end is nilpotent with index 2, since A^2 = 0. Example 2 More generally, any n-dimensional triangular matrix with zeros along the main diagonal is nilpotent, with index \le n . For example, the matrix : B=\begin 0 & 2 & 1 & 6\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0 \end is nilpotent, with : B^2=\begin 0 & 0 & 2 & 7\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end ;\ B^3=\begin 0 & 0 & 0 & 6\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]