Westerlund 1-237
   HOME
*





Westerlund 1-237
Westerlund 1-237 or Wd 1-237 is a possible red supergiant (RSG) in the constellation of Ara. It is one out of 4 known red supergiants in the Westerlund 1 super star cluster, although its outlying position, spectrum, and parallax, suggest it could be a foreground giant. As a red supergiant, it would be one of the largest known stars and one of most luminous of its type. Physical characteristics Westerlund 1-237 is classified as a luminous cool supergiant emitting most of its energy in the infrared spectrum. It is surrounded by a radio nebula which is similar in mass to those of Westerlund 1-20 and Westerlund 1-26, and moreover directly comparable to that of VY Canis Majoris. The elliptical structure of this nebula however indicates that it has been less affected by the cluster wind of Westerlund 1 (W20 and W26 have pronounced cometary shaped nebulae). The outflow velocity for the RSG wind is assumed to be around 30 km/s. The nebula itself seems to have a mass of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Westerlund 1
Westerlund 1 (abbreviated Wd1, sometimes called Ara Cluster) is a compact young super star cluster about 3.8 kpc (12,000 ly) away from Earth. It is thought to be the most massive young star cluster in the Milky Way, and was discovered by Bengt Westerlund in 1961 but remained largely unstudied for many years due to high interstellar absorption in its direction. In the future, it will probably evolve into a globular cluster. The cluster contains a large number of rare, evolved, high-mass stars, including: 6 yellow hypergiants, 4 red supergiants including Westerlund 1-26, one of the largest known stars, 24 Wolf-Rayet stars, a luminous blue variable, many OB supergiants, and an unusual supergiant sgB star which has been proposed to be the remnant of a recent stellar merger. In addition, X-ray observations have revealed the presence of the anomalous X-ray pulsar CXO J164710.20-455217, a slow rotating neutron star that must have formed from a high-mass progenitor star. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Westerlund 1-20
Westerlund 1-20 (abbreviated to Wd 1-20 or just W20) is a red supergiant (RSG) located in the Westerlund 1 super star cluster. Its radius was calculated to be around 965 solar radii (6.72 × 108 km, 4.48 au), making it one of the largest stars discovered so far. This corresponds to a volume 899 million times bigger than the Sun. If placed at the center of the Solar System, the photosphere of Westerlund 1-20 would almost reach the orbit of Jupiter. The star is classified as a luminous cool supergiant emitting most of its energy in the infrared spectrum. W20 occupies the upper right corner of the Hertzsprung-Russell diagram. Using the effective temperature of 3,500 K, the bolometric luminosity of 126,000 L☉ and the solar effective temperature of 5,772 K, its radius can be calculated using the Stefan-Boltzmann law. Westerlund 1-20 was observed to have an extended, cometary shaped nebula, similar to the other red supergiant Westerlund 1 W26. It is therefore lik ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


M-type Supergiants
Type M or M type may refer to: Science and technology * Type M, a xD-Picture Card * Type M, a name for the 15 amp BS 546 electrical plug * Vaio Type M, a kind of Vaio computer from Sony * M-type asteroid * m-type filter, an electronic filter * M-type star * M-types, an implementation of inductive type Other uses * Audi Type M, a 1920s car * Beretta 92FS Compact Type M, a pistol * MG M-type, a sports car See also * M class (other) M class or M-class may refer to: Military * M-class cruiser, a planned German light cruiser class * M-class destroyer, several classes of destroyer ** Admiralty M-class destroyer, a class of British destroyers built 1913–1916 and served in World ... * Class M (other) {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Westerlund 1-75
Westerlund 1 W75 or Wd 1-75 is a red supergiant (RSG) located in the Westerlund 1 super star cluster. Its radius is calculated to be around 668 solar radii (4.65 × 108 km, 3.10 au). This corresponds to a volume 298 million times bigger than the Sun. If placed at the center of the Solar System, Westerlund 1-75 would engulf the inner limits of the asteroid belt. The star is classified as a luminous cool supergiant emitting most of its energy in the infrared spectrum. It occupies the upper right corner of the Hertzsprung-Russell diagram. Using the effective temperature of 3,600 K, the bolometric luminosity of 68,000 L☉ and the solar effective temperature of 5,772 K, the radius of Westerlund 1-75 can be calculated using the Stefan-Boltzmann law at . Like Westerlund 1-20, Westerlund 1 W26 and Westerlund 1-237, Westerlund 1-75 was observed to be a radio source, however it is weakest along the RSGs in its cluster and remains unresolved at any wavelength. Wes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gaia Data Release 2
The ''Gaia'' catalogues are star catalogues created using the results obtained by ''Gaia'' space telescope. The catalogues are released in stages that will contain increasing amounts of information; the early releases also miss some stars, especially fainter stars located in dense star fields. Data from every data release can be accessed at the ''Gaia'' archive. Initial Gaia Source List The Initial Gaia Source List (IGSL) is a star catalogue of 1.2 billion objects created in support of the ''Gaia'' mission. The mission should have delivered a catalogue based entirely on its own data. For the first catalogue, Gaia DR1, a way was needed to be able to assign the observations to an object and to compare them with the objects from other star catalogues. For this purpose, a separate catalog of objects from several other catalogues was compiled, which roughly represents the state of knowledge of astronomy at the beginning of the Gaia mission. Attitude Star Catalog The Attitude Star ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellar Evolution
Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star. Nuclear fusion powers a star for most of its existence. Initially the energy is generated by the fusion of hydrogen atoms at the core of the main-sequence star. Later, as the preponderance of atoms at the core becomes helium, stars like the Sun begin to fuse hydrogen along a spherical shell surrounding the core. This process causes the star to gradually grow in size, passing throug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth the mass of the Sun. Jupiter is the List of brightest natural objects in the sky, third brightest natural object in the Earth's night sky after the Moon and Venus, and it has been observed since Pre-history, prehistoric times. It was named after the Jupiter (mythology), Roman god Jupiter, the king of the gods. Jupiter is primarily composed of hydrogen, but helium constitutes one-quarter of its mass and one-tenth of its volume. It probably has a rocky core of heavier elements, but, like the other giant planets in the Solar System, it lacks a well-defined solid surface. The ongoing contraction of Jupiter's interior generates more heat than it receives from the Sun. Because of its rapid rotation, the planet' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solar Radius
Solar radius is a unit of distance used to express the size of stars in astronomy relative to the Sun. The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3: :1\,R_ = 6.957\times 10^8 \hbox is approximately 10 times the average radius of Jupiter, about 109 times the radius of the Earth, and 1/215th of an astronomical unit, the distance of the Earth from the Sun. It varies slightly from pole to equator due to its rotation, which induces an oblateness in the order of 10 parts per million. Measurements The unmanned SOHO spacecraft was used to measure the radius of the Sun by timing transits of Mercury across the surface during 2003 and 2006. The result was a measured radius of . Haberreiter, Schmutz & Kosovichev (2008) determined the radius corresponding to the solar photosphere to be . This new value is consistent with helioseismic estimates; the same study showed that previous estimates using inflection poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Luminosity
Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical object. In SI units, luminosity is measured in joules per second, or watts. In astronomy, values for luminosity are often given in the terms of the luminosity of the Sun, ''L''⊙. Luminosity can also be given in terms of the astronomical magnitude system: the absolute bolometric magnitude (''M''bol) of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure of the luminosity within some specific wavelength range or filter band. In contrast, the term ''brightness'' in astronomy is generally used to refer to an object's apparent brightness: that is, how bright an object appears to an observer. Apparent brightness depends on both the lumin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hertzsprung–Russell Diagram
The Hertzsprung–Russell diagram, abbreviated as H–R diagram, HR diagram or HRD, is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosity, luminosities versus their stellar classifications or effective temperatures. The diagram was created independently in 1911 by Ejnar Hertzsprung and by Henry Norris Russell in 1913, and represented a major step towards an understanding of stellar evolution. Historical background In the nineteenth century large-scale photographic spectroscopic surveys of stars were performed at Harvard College Observatory, producing spectral classifications for tens of thousands of stars, culminating ultimately in the Henry Draper Catalogue. In one segment of this work Antonia Maury included divisions of the stars by the width of their spectral lines. Hertzsprung noted that stars described with narrow lines tended to have smaller proper motions than the others of the same spectral classification. He took this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

VY Canis Majoris
VY Canis Majoris (abbreviated to VY CMa) is an extreme oxygen-rich (O-rich) red hypergiant (RHG) or red supergiant (RSG) and pulsating variable star from the Solar System in the slightly southern constellation of Canis Major. It is one of the largest known stars, one of the most luminous and massive red supergiants, and one of the most luminous stars in the Milky Way. No evidence has been found that it is part of a multiple star system. Its great infrared (IR) excess makes it one of the brightest objects in the local part of the galaxy at wavelengths of 5 to 20 microns (µm) and indicates a dust shell or heated disk. It is about times the mass of the Sun (). It is surrounded by a complex asymmetric circumstellar envelope (CSE) caused by its mass loss. It produces strong molecular maser emission and was one of the first radio masers discovered. VY CMa is embedded in the large molecular cloud Sh2-310, a large, quite local star-forming H II region—its diameter: 48 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Westerlund 1-26
Westerlund 1-26 or Wd 1-26 is a red supergiant within the outskirts of the Westerlund 1 super star cluster. It is one of the largest known stars discovered so far although its radius is uncertain but is calculated to be , with a possible but very unlikely upper estimate of , corresponding to a volume between 1.58 and 16 billion times bigger than the Sun. Assuming the upper estimate is correct, if placed at the center of the Solar System, its photosphere would engulf the orbit of Jupiter. Discovery Westerlund 1 was discovered by Bengt Westerlund in 1961 during an infrared survey in the Zone of Avoidance of the sky, and described as "a heavily reddened cluster in Ara". The spectral types of the component stars could not be determined at the time except for the brightest star which was tentatively considered type M. In 1969, Borgman, Kornneef, and Slingerland conducted a photometric survey of the cluster and assigned letters to the stars they measured. This star, ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]