Weingarten Equations
   HOME
*





Weingarten Equations
The Weingarten equations give the expansion of the derivative of the unit normal vector to a surface in terms of the first derivatives of the position vector of a point on the surface. These formulas were established in 1861 by the German mathematician Julius Weingarten. Statement in classical differential geometry Let ''S'' be a surface in three-dimensional Euclidean space that is parametrized by the position vector r(''u'', ''v''). Let ''P'' = ''P''(''u'', ''v'') be a point on the surface. Then : \mathbf_ = \frac , \quad \mathbf_ = \frac are two tangent vectors at point ''P''. Let n(''u'', ''v'') be the unit normal vector and let (''E'', ''F'', ''G'') and (''L'', ''M'', ''N'') be the coefficients of the first and second fundamental forms of this surface, respectively. The Weingarten equation gives the first derivative of the unit normal vector n at point ''P'' in terms of the tangent vectors r''u'' and r''v'': :\mathbf_u = \frac \mathbf_u + \frac \mathbf_v :\mathbf_v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Position (vector)
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents the position of a point ''P'' in space in relation to an arbitrary reference origin ''O''. Usually denoted x, r, or s, it corresponds to the straight line segment from ''O'' to ''P''. In other words, it is the displacement or translation that maps the origin to ''P'': :\mathbf=\overrightarrow The term "position vector" is used mostly in the fields of differential geometry, mechanics and occasionally vector calculus. Frequently this is used in two-dimensional or three-dimensional space, but can be easily generalized to Euclidean spaces and affine spaces of any dimension.Keller, F. J, Gettys, W. E. et al. (1993), p 28–29 Relative position The relative position of a point ''Q'' with respect to point ''P'' is the Euclidean vector resulting from the subtraction of the two absolute position vectors (each with respect to the origin): :\Delta \mathbf=\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Julius Weingarten
Julius Weingarten (2 March 1836 – 16 June 1910) was a German mathematician. He received his doctorate in 1864 from Martin-Luther-Universität Halle-Wittenberg. He made some important contributions to the differential geometry of surfaces, such as the Weingarten equations The Weingarten equations give the expansion of the derivative of the unit normal vector to a surface in terms of the first derivatives of the position vector of a point on the surface. These formulas were established in 1861 by the German mathematic .... Notes References * External links * * 19th-century German mathematicians 1836 births 1910 deaths 20th-century German mathematicians {{Germany-mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension (mathematics), dimension, including the three-dimensional space and the ''Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient History of geometry#Greek geometry, Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the Greek mathematics, ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of ''mathematical proof, proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as eviden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surface Normal
In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve at the point. A normal vector may have length one (a unit vector) or its length may represent the curvature of the object (a ''curvature vector''); its algebraic sign may indicate sides (interior or exterior). In three dimensions, a surface normal, or simply normal, to a surface at point P is a vector perpendicular to the tangent plane of the surface at P. The word "normal" is also used as an adjective: a line ''normal'' to a plane, the ''normal'' component of a force, the normal vector, etc. The concept of normality generalizes to orthogonality (right angles). The concept has been generalized to differentiable manifolds of arbitrary dimension embedded in a Euclidean space. The normal vector space or normal space of a manifold at point P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First Fundamental Form
In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of . It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space. The first fundamental form is denoted by the Roman numeral , \mathrm(x,y)= \langle x,y \rangle. Definition Let be a parametric surface. Then the inner product of two tangent vectors is \begin & \quad \mathrm(aX_u+bX_v,cX_u+dX_v) \\ & = ac \langle X_u,X_u \rangle + (ad+bc) \langle X_u,X_v \rangle + bd \langle X_v,X_v \rangle \\ & = Eac + F(ad+bc) + Gbd, \end where , , and are the coefficients of the first fundamental form. The first fundamental form may be represented as a symmetric matrix. \mathrm(x,y) = x^\mathsf \begin E & F \\ F & G \endy Further notation When the first fundamental form is written with only one argument, it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Second Fundamental Form
In differential geometry, the second fundamental form (or shape tensor) is a quadratic form on the tangent plane of a smooth surface in the three-dimensional Euclidean space, usually denoted by \mathrm (read "two"). Together with the first fundamental form, it serves to define extrinsic invariants of the surface, its principal curvatures. More generally, such a quadratic form is defined for a smooth immersed submanifold in a Riemannian manifold. Surface in R3 Motivation The second fundamental form of a parametric surface in was introduced and studied by Gauss. First suppose that the surface is the graph of a twice continuously differentiable function, , and that the plane is tangent to the surface at the origin. Then and its partial derivatives with respect to and vanish at (0,0). Therefore, the Taylor expansion of ''f'' at (0,0) starts with quadratic terms: : z=L\frac + Mxy + N\frac + \text\,, and the second fundamental form at the origin in the coordinates is the qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Erwin Kreyszig
Erwin Otto Kreyszig (January 6, 1922 in Pirna, Germany – December 12, 2008) was a German Canadian applied mathematician and the Professor of Mathematics at Carleton University in Ottawa, Ontario, Canada. He was a pioneer in the field of applied mathematics: non-wave replicating linear systems. He was also a distinguished author, having written the textbook ''Advanced Engineering Mathematics'', the leading textbook for civil, mechanical, electrical, and chemical engineering undergraduate engineering mathematics. Kreyszig received his PhD degree in 1949 at the University of Darmstadt under the supervision of Alwin Walther. He then continued his research activities at the universities of Tübingen and Münster. Prior to joining Carleton University in 1984, he held positions at Stanford University (1954/55), the University of Ottawa (1955/56), Ohio State University (1956–60, professor 1957) and he completed his habilitation at the University of Mainz. In 1960 he became professor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]