Weil Group
   HOME
*





Weil Group
In mathematics, a Weil group, introduced by , is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field ''F'', its Weil group is generally denoted ''WF''. There also exists "finite level" modifications of the Galois groups: if ''E''/''F'' is a finite extension, then the relative Weil group of ''E''/''F'' is ''W''''E''/''F'' = ''WF''/ (where the superscript ''c'' denotes the commutator subgroup). For more details about Weil groups see or or . Weil group of a class formation The Weil group of a class formation with fundamental classes ''u''''E''/''F'' ∈ ''H''2(''E''/''F'', ''A''''F'') is a kind of modified Galois group, used in various formulations of class field theory, and in particular in the Langlands program. If ''E''/''F'' is a normal layer, then the (relative) Weil group ''W''''E''/''F'' of ''E''/''F'' is the extension :1 → ''A''''F'' → ''W''''E''/''F'' → Gal(''E''/''F'') → 1 co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Galois Group
In mathematics, the absolute Galois group ''GK'' of a field ''K'' is the Galois group of ''K''sep over ''K'', where ''K''sep is a separable closure of ''K''. Alternatively it is the group of all automorphisms of the algebraic closure of ''K'' that fix ''K''. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When ''K'' is a perfect field, ''K''sep is the same as an algebraic closure ''K''alg of ''K''. This holds e.g. for ''K'' of characteristic zero, or ''K'' a finite field.) Examples * The absolute Galois group of an algebraically closed field is trivial. * The absolute Galois group of the real numbers is a cyclic group of two elements (complex conjugation and the identity map), since C is the separable closure of R and ''C:Rnbsp;= 2. * The absolute Galois group of a finite field ''K'' is isomorphic to the group :: \hat = \varprojlim \mathbf/n\mathbf. (For the notation, see Inverse limit.) :The Frobenius automorphism Fr is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frobenius Automorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphism maps every element to its -th power. In certain contexts it is an automorphism, but this is not true in general. Definition Let be a commutative ring with prime characteristic (an integral domain of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism ''F'' is defined by :F(r) = r^p for all ''r'' in ''R''. It respects the multiplication of ''R'': :F(rs) = (rs)^p = r^ps^p = F(r)F(s), and is 1 as well. Moreover, it also respects the addition of . The expression can be expanded using the binomial theorem. Because is prime, it divides but not any for ; it therefore will divide the numerator, but not the denominator, of the explicit formula of the binomial coefficients :\frac, if . Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shafarevich–Weil Theorem
In algebraic number theory, the Shafarevich–Weil theorem relates the fundamental class of a Galois extension of local or global fields to an extension of Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...s. It was introduced by for local fields and by for global fields. Statement Suppose that ''F'' is a global field, ''K'' is a normal extension of ''F'', and ''L'' is an abelian extension of ''K''. Then the Galois group Gal(''L''/''F'') is an extension of the group Gal(''K''/''F'') by the abelian group Gal(''L''/''K''), and this extension corresponds to an element of the cohomology group H2(Gal(''K''/''F''), Gal(''L''/''K'')). On the other hand, class field theory gives a fundamental class in H2(Gal(''K''/''F''),''I''''K'') and a reciprocity law map from ''I''''K'' t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Langlands Group
In mathematics, the Langlands group is a conjectural group ''L''''F'' attached to each local or global field ''F'', that satisfies properties similar to those of the Weil group. It was given that name by Robert Kottwitz. In Kottwitz's formulation, the Langlands group should be an extension of the Weil group by a compact group. When ''F'' is local archimedean, ''LF'' is the Weil group of ''F'', when ''F'' is local non-archimedean, ''LF'' is the product of the Weil group of ''F'' with SU(2). When ''F'' is global, the existence of ''LF'' is still conjectural, though James Arthur gives a conjectural description of it. The Langlands correspondence for ''F'' is a "natural" correspondence between the irreducible ''n''-dimensional complex representations of ''LF'' and, in the local case, the cuspidal automorphic representations of GL''n''(A''F''), where A''F'' denotes the adele Adele Laurie Blue Adkins (, ; born 5 May 1988), professionally kno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weil–Deligne Representation
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for ''G''-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Examples *Given a field ''K'', the multiplicative group (''Ks'')× of a separable closure of ''K'' is a Galois module for the absolute Galois group. Its second cohomology group is isomorphic to the Brauer group of ''K'' (by Hilbert's theorem 90, its first cohomology group is zero). *If ''X'' is a smooth proper scheme over a field ''K'' then the ℓ-adic cohomology groups of its geometric fibre are Galois modules for the absolute Galois group of ''K''. Ramification theory Let ''K'' be a valued field (with valuation denoted ''v'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Langlands Correspondence
In mathematics, the local Langlands conjectures, introduced by , are part of the Langlands program. They describe a correspondence between the complex representations of a reductive algebraic group ''G'' over a local field ''F'', and representations of the Langlands group of ''F'' into the L-group of ''G''. This correspondence is not a bijection in general. The conjectures can be thought of as a generalization of local class field theory from abelian Galois groups to non-abelian Galois groups. Local Langlands conjectures for GL1 The local Langlands conjectures for GL1(''K'') follow from (and are essentially equivalent to) local class field theory. More precisely the Artin map gives an isomorphism from the group GL1(''K'')= ''K''* to the abelianization of the Weil group. In particular irreducible smooth representations of GL1(''K'') are 1-dimensional as the group is abelian, so can be identified with homomorphisms of the Weil group to GL1(C). This gives the Langlands corresponden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Profinite Group
In mathematics, a locally profinite group is a Hausdorff topological group in which every neighborhood of the identity element contains a compact open subgroup. Equivalently, a locally profinite group is a topological group that is Hausdorff, locally compact, and totally disconnected. Moreover, a locally profinite group is compact if and only if it is profinite; this explains the terminology. Basic examples of locally profinite groups are discrete groups and the ''p''-adic Lie groups. Non-examples are real Lie groups, which have the no small subgroup property. In a locally profinite group, a closed subgroup is locally profinite, and every compact subgroup is contained in an open compact subgroup. Examples Important examples of locally profinite groups come from algebraic number theory. Let ''F'' be a non-archimedean local field. Then both ''F'' and F^\times are locally profinite. More generally, the matrix ring \operatorname_n(F) and the general linear group \operatorname_n( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arithmetic Frobenius
In mathematics, the Frobenius endomorphism is defined in any commutative ring ''R'' that has characteristic ''p'', where ''p'' is a prime number. Namely, the mapping φ that takes ''r'' in ''R'' to ''r''''p'' is a ring endomorphism of ''R''. The image of φ is then ''R''''p'', the subring of ''R'' consisting of ''p''-th powers. In some important cases, for example finite fields, φ is surjective. Otherwise φ is an endomorphism but not a ring ''automorphism''. The terminology of geometric Frobenius arises by applying the spectrum of a ring construction to φ. This gives a mapping :φ*: Spec(''R''''p'') → Spec(''R'') of affine schemes. Even in cases where ''R''''p'' = ''R'' this is not the identity, unless ''R'' is the prime field. Mappings created by fibre product with φ*, i.e. base changes, tend in scheme theory to be called ''geometric Frobenius''. The reason for a careful terminology is that the Frobenius automorphism in Galois groups, or defined by transport of structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Cyclic
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Cohomology
In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group ''G'' in an associated ''G''-module ''M'' to elucidate the properties of the group. By treating the ''G''-module as a kind of topological space with elements of G^n representing ''n''-simplices, topological properties of the space may be computed, such as the set of cohomology groups H^n(G,M). The cohomology groups in turn provide insight into the structure of the group ''G'' and ''G''-module ''M'' themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]