HOME
*





Wedderburn's Little Theorem
In mathematics, Wedderburn's little theorem states that every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields. The Artin–Zorn theorem generalizes the theorem to alternative rings: every finite alternative division ring is a field. History The original proof was given by Joseph Wedderburn in 1905,Lam (2001), p. 204/ref> who went on to prove it two other ways. Another proof was given by Leonard Eugene Dickson shortly after Wedderburn's original proof, and Dickson acknowledged Wedderburn's priority. However, as noted in , Wedderburn's first proof was incorrect – it had a gap – and his subsequent proofs appeared only after he had read Dickson's correct proof. On this basis, Parshall argues that Dickson should be credited with the first correct proof. A simplified version of the proof was later given by Ernst Witt. Witt's proof is sketched below. Alternatively, the theorem is a consequence of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stamm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclotomic Polynomials
In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th primitive roots of unity e^ , where ''k'' runs over the positive integers not greater than ''n'' and coprime to ''n'' (and ''i'' is the imaginary unit). In other words, the ''n''th cyclotomic polynomial is equal to : \Phi_n(x) = \prod_\stackrel \left(x-e^\right). It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive ''n''th-root of unity ( e^ is an example of such a root). An important relation linking cyclotomic polynomials and primitive roots of unity is :\prod_\Phi_d(x) = x^n - 1, showing that is a root of x^n - 1 if and only if it is a ''d''th primitive root of unity for some ''d'' that divides ''n''. Examples If ''n'' is a pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Factorization
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems. The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension. But most of the knowledge on this topic is not older than circa 1965 and the first computer algebra systems: When the long-known finite step algorithms were first put on computers, they turned out to be highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and with coefficients of a moderate size (up to 100 bits) can be factored by modern algorithms in a few minute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjugacy Class
In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under b = gag^. for all elements g in the group. Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure. For an abelian group, each conjugacy class is a set containing one element (singleton set). Functions that are constant for members of the same conjugacy class are called class functions. Definition Let G be a group. Two elements a, b \in G are conjugate if there exists an element g \in G such that gag^ = b, in which case b is called of a and a is called a conjugate of b. In the case of the general linear group \operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Centralizer And Normalizer
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', or equivalently, such that conjugation by g leaves each element of ''S'' fixed. The normalizer of ''S'' in ''G'' is the set of elements \mathrm_G(S) of ''G'' that satisfy the weaker condition of leaving the set S \subseteq G fixed under conjugation. The centralizer and normalizer of ''S'' are subgroups of ''G''. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets ''S''. Suitably formulated, the definitions also apply to semigroups. In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring ''R'' is a subring of ''R''. This article also deals with centralizers and normaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Division Ring
In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element usually denoted , such that . So, (right) ''division'' may be defined as , but this notation is avoided, as one may have . A commutative division ring is a field. Wedderburn's little theorem asserts that all finite division rings are commutative and therefore finite fields. Historically, division rings were sometimes referred to as fields, while fields were called "commutative fields". In some languages, such as French, the word equivalent to "field" ("corps") is used for both commutative and noncommutative cases, and the distinction between the two cases is made by adding qualificatives such as "corps commutatif" (commutative field) or "corps gauche" (skew field). All division rings are simple. That is, they have no two-sided ideal b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cancellation Property
In mathematics, the notion of cancellative is a generalization of the notion of invertible. An element ''a'' in a magma has the left cancellation property (or is left-cancellative) if for all ''b'' and ''c'' in ''M'', always implies that . An element ''a'' in a magma has the right cancellation property (or is right-cancellative) if for all ''b'' and ''c'' in ''M'', always implies that . An element ''a'' in a magma has the two-sided cancellation property (or is cancellative) if it is both left- and right-cancellative. A magma has the left cancellation property (or is left-cancellative) if all ''a'' in the magma are left cancellative, and similar definitions apply for the right cancellative or two-sided cancellative properties. A left-invertible element is left-cancellative, and analogously for right and two-sided. For example, every quasigroup, and thus every group, is cancellative. Interpretation To say that an element ''a'' in a magma is left-cancellative, is to say ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert's Theorem 90
In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if ''L''/''K'' is an extension of fields with cyclic Galois group ''G'' = Gal(''L''/''K'') generated by an element \sigma, and if a is an element of ''L'' of relative norm 1, that isN(a):=a\, \sigma(a)\, \sigma^2(a)\cdots \sigma^(a)=1,then there exists b in ''L'' such thata=b/\sigma(b).The theorem takes its name from the fact that it is the 90th theorem in David Hilbert's Zahlbericht , although it is originally due to . Often a more general theorem due to is given the name, stating that if ''L''/''K'' is a finite Galois extension of fields with arbitrary Galois group ''G'' = Gal(''L''/''K''), then the first cohomology group of ''G'', with coefficients in the multiplicative group of ''L'', is trivial: :H^1(G,L^\times)=\. Examples Let L/K be the qua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Herbrand Quotient
In mathematics, the Herbrand quotient is a quotient of orders of Group cohomology, cohomology groups of a cyclic group. It was invented by Jacques Herbrand. It has an important application in class field theory. Definition If ''G'' is a finite cyclic group acting on a G-module, ''G''-module ''A'', then the cohomology groups ''H''''n''(''G'',''A'') have period 2 for ''n''≥1; in other words :''H''''n''(''G'',''A'') = ''H''''n''+2(''G'',''A''), an isomorphism induced by cup product with a generator of ''H''''2''(''G'',Z). (If instead we use the Tate cohomology groups then the periodicity extends down to ''n''=0.) A Herbrand module is an ''A'' for which the cohomology groups are finite. In this case, the Herbrand quotient ''h''(''G'',''A'') is defined to be the quotient :''h''(''G'',''A'') = , ''H''''2''(''G'',''A''), /, ''H''''1''(''G'',''A''), of the order of the even and odd cohomology groups. Alternative definition The quotient may be defined for a pair of endomorphisms of an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brauer Group
Brauer or Bräuer is a surname of German origin, meaning "brewer". Notable people with the name include:- * Alfred Brauer (1894–1985), German-American mathematician, brother of Richard * Andreas Brauer (born 1973), German film producer * Arik Brauer (1929–2021), Austrian painter, poet, and actor, father of Timna Brauer * August Brauer (1863-1917), German zoologist * Friedrich Moritz Brauer (1832–1904), Austrian entomologist and museum director * Georg Brauer (1908–2001), German chemist * Ingrid Arndt-Brauer (born 1961), German politician; member of the Bundestag * Jono Brauer (born 1981), Australian Olympic skier * Max Brauer (1887–1973), German politician; First Mayor of Hamburg * Michael Brauer (contemporary), American audio engineer * Rich Brauer (born 1954), American politician from Illinois; state legislator since 2003 * Richard Brauer (1901–1977), German-American mathematician * Richard H. W. Brauer (contemporary), American art museum director; eponym of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]