Weak Hypercharge
   HOME
*



picture info

Weak Hypercharge
In the Standard Model of electroweak interactions of particle physics, the weak hypercharge is a quantum number relating the electric charge and the third component of weak isospin. It is frequently denoted Y_\mathsf and corresponds to the gauge symmetry U(1). It is conserved (only terms that are overall weak-hypercharge neutral are allowed in the Lagrangian). However, one of the interactions is with the Higgs field. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. This changes their weak hypercharge (and weak isospin ). Only a specific combination of them, ~Q = T_3 + \tfrac\, Y_\mathsf (electric charge), is conserved. Mathematically, weak hypercharge appears similar to the Gell-Mann–Nishijima formula for the hypercharge of strong interactions (which is not conserved in weak interactions and is zero for leptons). In the electroweak theory SU(2) transformations commute with U(1) transformations by defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Strange Quark
The strange quark or s quark (from its symbol, s) is the third lightest of all quarks, a type of elementary particle. Strange quarks are found in subatomic particles called hadrons. Examples of hadrons containing strange quarks include kaons (), strange D mesons (), Sigma baryons (), and other strange particles. According to the IUPAP, the symbol s is the official name, while "strange" is to be considered only as a mnemonic. The name sideways has also been used because the s quark has an I value of 0 while the u ("up") and d ("down") quarks have values of + and − respectively. Along with the charm quark, it is part of the second generation of matter. It has an electric charge of −  ''e'' and a bare mass of . Like all quarks, the strange quark is an elementary fermion with spin , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the strange quark is the strange ant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bottom Quark
The bottom quark or b quark, also known as the beauty quark, is a third-generation heavy quark with a charge of −  ''e''. All quarks are described in a similar way by electroweak and quantum chromodynamics, but the bottom quark has exceptionally low rates of transition to lower-mass quarks. The bottom quark is also notable because it is a product in almost all top quark decays, and is a frequent decay product of the Higgs boson. Name and history The bottom quark was first described theoretically in 1973 by physicists Makoto Kobayashi and Toshihide Maskawa to explain CP violation. The name "bottom" was introduced in 1975 by Haim Harari. The bottom quark was discovered in 1977 by the Fermilab E288 experiment team led by Leon M. Lederman, when collisions produced bottomonium. Kobayashi and Maskawa won the 2008 Nobel Prize in Physics for their explanation of CP-violation. While the name "beauty" is sometimes used, "bottom" became the predominant usage by analogy of "to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Down Quark
The down quark or d quark (symbol: d) is the second-lightest of all quarks, a type of elementary particle, and a major constituent of matter. Together with the up quark, it forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of −  ''e'' and a bare mass of . Like all quarks, the down quark is an elementary fermion with spin , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the down quark is the down antiquark (sometimes called ''antidown quark'' or simply ''antidown''), which differs from it only in that some of its properties have equal magnitude but opposite sign. Its existence (along with that of the up and strange quarks) was postulated in 1964 by Murray Gell-Mann and George Zweig to explain the Eightfold Way classification scheme of hadro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higgs Field
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge, that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its " Mexican hat-shaped" potential leads it to take a nonzero value ''everywhere'' (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction, and via the Higgs mechanism gives mass to many particles. Both the field and the boson are named after physicist Peter Higgs, who in 1964, alo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Model (mathematical Formulation)
This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group . The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson. The Standard Model is renormalizable and mathematically self-consistent, however despite having huge and continued successes in providing experimental predictions it does leave some unexplained phenomena. In particular, although the physics of special relativity is incorporated, general relativity is not, and the Standard Model will fail at energies or distances where the graviton is expected to emerge. Therefore, in a modern field theory context, it is seen as an effective field theory. Quantum field theory The standard model is a quantum field theory, meaning its fundamental objects are ''quantum fields'' which are defined at all points in spacetime. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spin (,, ...). Every observed subatomic particle is either a boson or a fermion. Bosons are named after physicist Satyendra Nath Bose. Some bosons are elementary particles and occupy a special role in particle physics unlike that of fermions, which are sometimes described as the constituents of "ordinary matter". Some elementary bosons (for example, gluons) act as force carriers, which give rise to forces between other particles, while one (the Higgs boson) gives rise to the phenomenon of mass. Other bosons, such as mesons, are composite particles made up of smaller constituents. Outside the realm of particle physics, superfluidity arises because composite bosons (bose particles), such as low temperature helium-4 atoms, follow Bose–E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charge Conjugation
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry (time reversal). These discrete symmetries, C, P and T, are symmetries of the equations that describe the known fundamental forces of nature: electromagnetism, gravity, the strong and the weak interactions. Verifying whether some given mathematical equation correctly models nature requires giving physical interpretation not only to continuous symmetries, such as motion in time, but also to its discrete symmetries, and then determining whether nature adheres to these symmetries. Unlike the continuous symmetries, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Helicity (particle Physics)
In physics, helicity is the projection of the spin onto the direction of momentum. Overview The angular momentum J is the sum of an orbital angular momentum L and a spin S. The relationship between orbital angular momentum L, the position operator r and the linear momentum (orbit part) p is :\mathbf = \mathbf\times\mathbf so L's component in the direction of p is zero. Thus, helicity is just the projection of the spin onto the direction of linear momentum. The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite. Helicity is conserved. That is, the helicity commutes with the Hamiltonian, and thus, in the absence of external forces, is time-invariant. It is also rotationally invariant, in that a rotation applied to the system leaves the helicity unchanged. Helicity, however, is not Lorentz invariant; under the action of a Lorentz boost, the helicity may chang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weak Isospin
In particle physics, weak isospin is a quantum number relating to the weak interaction, and parallels the idea of isospin under the strong interaction. Weak isospin is usually given the symbol or , with the third component written as or . It can be understood as the eigenvalue of a charge operator. is more important than and typically the term "weak isospin" may refer to the "3rd component of weak isospin". The weak isospin conservation law relates to the conservation of T_3; weak interactions conserve . It is also conserved by the electromagnetic and strong interactions. However, interaction with the Higgs field does ''not'' conserve , as directly seen by propagation of fermions, mixing chiralities by dint of their mass terms resulting from their Higgs couplings. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. Interaction with the Higgs field changes particles' weak isospin (and weak hypercharge). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics. Some fermions are elementary particles (such as electrons), and some are composite particles (such as protons). For example, according to the spin-statistics theorem in relativistic quantum field theory, particles with integer spin are bosons. In contrast, particles with half-integer spin are fermions. In addition to the spin characteristic, fermions have another specific property: they possess conserved baryon or lepton quantum numbers. Therefore, what is usually referred to as the spin-statistics relation is, in fact, a spin statistics-quantum numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chirality (physics)
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Chirality and helicity The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion. It is negative (“left-handed”) if the directions of spin and motion are opposite. So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards. Mathematically, ''helicity'' is the sign of the projection of the spin vector onto the momentum vector: “left” is negative, “right” is positive. The chira ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]