WHI3
   HOME
*





WHI3
WHI3 is a developmental regulator in budding yeast. It influences cell size and the cell cycle by binding CLN3 mRNA and inhibiting its translation. This, in turn, inhibits the G1/S transition.Garí, E., Volpe, T., Wang, H., Gallego, C., Futcher, B., & Aldea, M. (2001). WHI3 binds the mRNA of the G1 cyclin CLN3 to modulate cell fate in budding yeast. Genes & development, 15(21), 2803-2808. Function WHI3 mediates many, often vital, processes such as the cell cycle, meiosis, filamentous growth and mating. Regulation of the cell cycle is done by acting on the cyclin CLN3, a protein crucial to the G1/S transition in budding yeast. WHI3 acts by binding CLN3 mRNA, and then co-localizes, to form cytoplasmic foci. This locally restricts synthesis of the short-lived CLN3 protein, thus limiting its range.Schneider B.L., Patton E.E., Lanker S., Mendenhall M.D., Wittenberg C., Futcher B., Tyers M.(1998) Yeast G1 cyclins are unstable in G1 phase. Nature 395:86–89. During G1, yeast has the a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Budding Yeast
''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been originally isolated from the skin of grapes. It is one of the most intensively studied eukaryotic model organisms in molecular and cell biology, much like ''Escherichia coli'' as the model bacterium. It is the microorganism behind the most common type of fermentation. ''S. cerevisiae'' cells are round to ovoid, 5–10  μm in diameter. It reproduces by budding. Many proteins important in human biology were first discovered by studying their homologs in yeast; these proteins include cell cycle proteins, signaling proteins, and protein-processing enzymes. ''S. cerevisiae'' is currently the only yeast cell known to have Berkeley bodies present, which are involved in particular secretory pathways. Antibodies against ''S. cerevis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CLN3
G1/S-specific cyclin Cln3 is a protein that is encoded by the ''CLN3'' gene. The Cln3 protein is a budding yeast G1 cyclin that controls the timing of ''Start'', the point of commitment to a mitotic cell cycle. It is an upstream regulator of the other G1 cyclins, and it is thought to be the key regulator linking cell growth to cell cycle progression. It is a 65 kD, unstable protein; like other cyclins, it functions by binding and activating cyclin-dependent kinase (CDK). Cln3 in ''Start'' regulation Cln3 regulates ''Start'', the point at which budding yeast commit to the G1/S transition and thus a round of mitotic division. It was first identified as a gene controlling this process in the 1980s; research over the past few decades has provided a mechanistic understanding of its function. Identification of ''CLN3'' gene The ''CLN3'' gene was originally identified as the ''whi1-1'' allele in a screen for small size mutants of Saccharomyces cerevisiae (for Cln3's role in size ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is created during the process of Transcription (biology), transcription, where an enzyme (RNA polymerase) converts the gene into primary transcript mRNA (also known as pre-mRNA). This pre-mRNA usually still contains introns, regions that will not go on to code for the final amino acid sequence. These are removed in the process of RNA splicing, leaving only exons, regions that will encode the protein. This exon sequence constitutes mature mRNA. Mature mRNA is then read by the ribosome, and, utilising amino acids carried by transfer RNA (tRNA), the ribosome creates the protein. This process is known as Translation (biology), translation. All of these processes form part of the central dogma of molecular biology, which describes the flow of genet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Translation(genetics)
Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''translating'' (a written text) and ''interpreting'' (oral or signed communication between users of different languages); under this distinction, translation can begin only after the appearance of writing within a language community. A translator always risks inadvertently introducing source-language words, grammar, or syntax into the target-language rendering. On the other hand, such "spill-overs" have sometimes imported useful source-language calques and loanwords that have enriched target languages. Translators, including early translators of sacred texts, have helped shape the very languages into which they have translated. Because of the laboriousness of the translation process, since the 1940s efforts have been made, with varying degrees o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE