HOME





Wick's Theorem
Wick's theorem is a method of reducing high-order derivatives to a combinatorics problem. It is named after Italian physicist Gian-Carlo Wick. It is used extensively in quantum field theory to reduce arbitrary products of creation and annihilation operators to sums of products of pairs of these operators. This allows for the use of Green's function methods, and consequently the use of Feynman diagrams in the field under study. A more general idea in probability theory is Isserlis' theorem. In perturbative quantum field theory, Wick's theorem is used to quickly rewrite each time ordered summand in the Dyson series as a sum of normal ordered terms. In the limit of asymptotically free ingoing and outgoing states, these terms correspond to Feynman diagrams. Definition of contraction For two operators \hat and \hat we define their contraction to be :\hat^\bullet\, \hat^\bullet \equiv \hat\,\hat\, - \mathopen \hat\,\hat \mathclose where \mathopen \hat \mathclose denotes th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kronecker Delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, where the Kronecker delta is a piecewise function of variables and . For example, , whereas . The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above. In linear algebra, the identity matrix has entries equal to the Kronecker delta: I_ = \delta_ where and take the values , and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_\delta_b_ = \sum_^n a_ b_. Here the Euclidean vectors are defined as -tuples: \mathbf = (a_1, a_2, \dots, a_n) and \mathbf= (b_1, b_2, ..., b_n) and the last step is obtained by using the values of the Kronecker ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory in quantum mechanics. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its devel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Ordering
In quantum field theory a product of quantum fields, or equivalently their creation and annihilation operators, is usually said to be normal ordered (also called Wick order) when all creation operators are to the left of all annihilation operators in the product. The process of putting a product into normal order is called normal ordering (also called Wick ordering). The terms antinormal order and antinormal ordering are analogously defined, where the annihilation operators are placed to the left of the creation operators. Normal ordering of a product quantum fields or creation and annihilation operators can also be defined in many other ways. Which definition is most appropriate depends on the expectation values needed for a given calculation. Most of this article uses the most common definition of normal ordering as given above, which is appropriate when taking expectation values using the vacuum state of the creation and annihilation operators. The process of normal ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thermal Quantum Field Theory
In theoretical physics, thermal quantum field theory (thermal field theory for short) or finite temperature field theory is a set of methods to calculate expectation values of physical observables of a quantum field theory at finite temperature. In the Matsubara formalism, the basic idea (due to Felix Bloch) is that the expectation values of operators in a canonical ensemble : \langle A\rangle=\frac may be written as expectation values in ordinary quantum field theory where the configuration is evolved by an imaginary time \tau = i t(0\leq\tau\leq\beta). One can therefore switch to a spacetime with Euclidean signature, where the above trace (Tr) leads to the requirement that all bosonic and fermionic fields be periodic and antiperiodic, respectively, with respect to the Euclidean time direction with periodicity \beta = 1/(kT) (we are assuming natural units \hbar = 1). This allows one to perform calculations with the same tools as in ordinary quantum field theory, such as func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vacuum Expectation Value
In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the Casimir effect. This concept is important for working with correlation functions in quantum field theory. It is also important in spontaneous symmetry breaking. Examples are: *The Higgs field has a vacuum expectation value of 246 GeV. This nonzero value underlies the Higgs mechanism of the Standard Model. This value is given by v = 1/\sqrt = 2M_W/g \approx 246.22\, \rm, where ''MW'' is the mass of the W Boson, G_F^0 the reduced Fermi constant, and the weak isospin coupling, in natural units. It is also near the limit of the most massive nuclei, at v = 264.3 Da. *The chiral condensate in quan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal distr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment (mathematics)
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis. The mathematical concept is closely related to the concept of moment in physics. For a distribution of mass or probability on a bounded interval, the collection of all the moments (of all orders, from to ) uniquely determines the distribution (Hausdorff moment problem). The same is not true on unbounded intervals ( Hamburger moment problem). In the mid-nineteenth century, Pafnuty Chebyshev became the first person to think sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vacuum State
In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The word zero-point field is sometimes used as a synonym for the vacuum state of a quantized field which is completely individual. According to present-day understanding of what is called the vacuum state or the quantum vacuum, it is "by no means a simple empty space". According to quantum mechanics, the vacuum state is not truly empty but instead contains fleeting electromagnetic waves and particles that pop into and out of the quantum field. The QED vacuum of quantum electrodynamics (or QED) was the first vacuum of quantum field theory to be developed. QED originated in the 1930s, and in the late 1940s and early 1950s it was reformulated by Feynman, Tomonaga, and Schwinger, who jointly received the Nobel prize for this work in 1965. For a historical discussion, see fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


S Matrix
In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT). More formally, in the context of QFT, the ''S''-matrix is defined as the unitary matrix connecting sets of asymptotically free particle states (the ''in-states'' and the ''out-states'') in the Hilbert space of physical states. A multi-particle state is said to be ''free'' (non-interacting) if it transforms under Lorentz transformations as a tensor product, or ''direct product'' in physics parlance, of ''one-particle states'' as prescribed by equation below. ''Asymptotically free'' then means that the state has this appearance in either the distant past or the distant future. While the ''S''-matrix may be defined for any background (spacetime) that is asymptotically solvable and has no event horizons, it has a simple form in the case of the Minkowsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (from the definition , being equal to the identity if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the '' commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as :. Identities (group theory) Commutator identities are an important tool in group theory. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Commutation Relations
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, hat x,\hat p_x= i\hbar \mathbb between the position operator and momentum operator in the direction of a point particle in one dimension, where is the commutator of and , is the imaginary unit, and is the reduced Planck's constant , and \mathbb is the unit operator. In general, position and momentum are vectors of operators and their commutation relation between different components of position and momentum can be expressed as hat r_i,\hat p_j= i\hbar \delta_ \mathbb. where \delta_ is the Kronecker delta. This relation is attributed to Werner Heisenberg, Max Born and Pascual Jordan (1925), who called it a "quantum condition" serving as a postulate of the theory; it was noted by E. Kennard (1927) to imply the Heisenberg uncertainty principle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]