Wess–Zumino Gauge
   HOME
*





Wess–Zumino Gauge
In particle physics, the Wess–Zumino gauge is a particular choice of a gauge transformation in a gauge theory with supersymmetry. In this gauge, the supersymmetrized gauge transformation is chosen in such a way that most components of the vector superfield vanish, except for the usual physical ones when the function of the superspace is expanded in terms of components. See also * Supersymmetric gauge theory In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetry, gauge symmetries. Supersymmetric gauge theory generalizes this notion. Gauge theory A gauge theory is a mathematical framework fo ... Supersymmetric quantum field theory Gauge theories {{quantum-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Theory
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the ''symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called '' gauge bosons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetry
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and intern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector Superfield
In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetries. Supersymmetric gauge theory generalizes this notion. Gauge theory A gauge theory is a mathematical framework for analysing gauge symmetries. There are two types of symmetries, viz., global and local. A global symmetry is the symmetry which remains invariant at each point of a manifold (manifold can be either of spacetime coordinates or that of internal quantum numbers). A local symmetry is the symmetry which depends upon the space over which it is defined, and changes with the variation in coordinates. Thus, such symmetry is invariant only locally (i.e., in a neighborhood on the manifold). Quantum chromodynamics and quantum electrodynamics are famous examples of gauge theories. Supersymmetry In particle physics, there exist particles with two kinds of particle statistics, bosons and fermions. Bosons carry integer spin values, and are characterized by the abil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Superspace
Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions ''x'', ''y'', ''z'', ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom. The word "superspace" was first used by John Archibald Wheeler, John Wheeler in an unrelated sense to describe the Configuration space (physics), configuration space of general relativity; for example, this usage may be seen in his 1973 textbook ''Gravitation (book), Gravitation''. Informal discussion There are several similar, but not equivalent, definitions of superspace that have been used, and continue to be used in the mathematical and physics literature. One such usage is as a synonym for super Minkowski space. In this case, one takes ordinary Minkowski space, and extends ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetric Gauge Theory
In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetry, gauge symmetries. Supersymmetric gauge theory generalizes this notion. Gauge theory A gauge theory is a mathematical framework for analysing gauge symmetries. There are two types of symmetries, viz., global and local. A global symmetry is the symmetry which remains invariant at each point of a manifold (manifold can be either of spacetime coordinates or that of internal quantum numbers). A local symmetry is the symmetry which depends upon the space over which it is defined, and changes with the variation in coordinates. Thus, such symmetry is invariant only locally (i.e., in a neighborhood on the manifold). Quantum chromodynamics and quantum electrodynamics are famous examples of gauge theories. Supersymmetry In particle physics, there exist particles with two kinds of particle statistics, bosons and fermions. Bosons carry integer spin values, and are characterize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetric Quantum Field Theory
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and internal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]