Wagner's Theorem
In graph theory, Wagner's theorem is a mathematical forbidden graph characterization of planar graphs, named after Klaus Wagner, stating that a finite graph is planar if and only if its graph minor, minors include neither ''K''5 (the complete graph on five vertex (graph theory), vertices) nor ''K''3,3 (the utility graph, a complete bipartite graph on six vertices). This was one of the earliest results in the theory of graph minors and can be seen as a forerunner of the Robertson–Seymour theorem. Definitions and statement A planar graph embedding, embedding of a given Graph (discrete mathematics), graph is a graph drawing, drawing of the graph in the Euclidean plane, with points for its vertex (graph theory), vertices and curves for its edge (graph theory), edges, in such a way that the only intersections between pairs of edges are at a common endpoint of the two edges. A graph minor, minor of a given graph is another graph formed by deleting vertices, deleting edges, and contr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Petersen Wagner Minors
Petersen is a common Danish patronymic surname, meaning ''"son of Peter"''. There are other spellings. Petersen may refer to: People In arts and entertainment * Adolf Dahm-Petersen, Norwegian voice specialist * Anja Petersen, German operatic soprano and university lecturer * Anker Eli Petersen, Faroese writer and artist * Ann Petersen, Belgian actress * Chris Petersen (born 1963), American child actor * Devon Petersen (born 1986), South African darts player * Elmer Petersen, American artist * Gustaf Munch-Petersen, Danish writer and painter * Joel Petersen, bass guitarist * John Hahn-Petersen, Danish actor * Josef Petersen, Danish novelist * Patrick Petersen, American actor * Paul Petersen, American movie actor, singer, novelist, and activist * Robert E. Petersen, publisher, auto museum founder * Robert Storm Petersen, Danish cartoonist, writer, animator, illustrator, painter and humorist * Sandy Petersen, American game designer * Uwe Fahrenkrog-Petersen, German musician ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multigraph
In mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called ''parallel edges''), that is, edges that have the same end nodes. Thus two vertices may be connected by more than one edge. There are 2 distinct notions of multiple edges: * ''Edges without own identity'': The identity of an edge is defined solely by the two nodes it connects. In this case, the term "multiple edges" means that the same edge can occur several times between these two nodes. * ''Edges with own identity'': Edges are primitive entities just like nodes. When multiple edges connect two nodes, these are different edges. A multigraph is different from a hypergraph, which is a graph in which an edge can connect any number of nodes, not just two. For some authors, the terms ''pseudograph'' and ''multigraph'' are synonymous. For others, a pseudograph is a multigraph that is permitted to have loops. Undirected multigraph (edges without ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statements About Planar Graphs
Statement or statements may refer to: Common uses *Statement (computer science), the smallest standalone element of an imperative programming language *Statement (logic and semantics), declarative sentence that is either true or false *Statement, a declarative phrase in language (linguistics) *Statement, a North American paper size of 5 1⁄2 in × 8 in (140 mm × 203 mm), also known under various names such as half letter and memo *Financial statement, formal summary of the financial activities of a business, person, or other entity * Mathematical statement, a statement in logic and mathematics *Political statement, any act or nonverbal form of communication that is intended to influence a decision to be made for or by a group *Press statement, written or recorded communication directed at members of the news media *Statement of Special Educational Needs, outlining specific provision needed for a child in England *Witness statement (law), a signed document recording the evidence g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matroid Minor
In the mathematical theory of matroids, a minor of a matroid ''M'' is another matroid ''N'' that is obtained from ''M'' by a sequence of restriction and contraction operations. Matroid minors are closely related to graph minors, and the restriction and contraction operations by which they are formed correspond to edge deletion and edge contraction operations in graphs. The theory of matroid minors leads to structural decompositions of matroids, and characterizations of matroid families by forbidden minors, analogous to the corresponding theory in graphs. Definitions If ''M'' is a matroid on the set ''E'' and ''S'' is a subset of ''E'', then the restriction of ''M'' to ''S'', written ''M'' , ''S'', is the matroid on the set ''S'' whose independent sets are the independent sets of ''M'' that are contained in ''S''. Its circuits are the circuits of ''M'' that are contained in ''S'' and its rank function is that of ''M'' restricted to subsets of ''S''. If ''T'' is an independent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graphic Matroid
In the mathematical theory of Matroid theory, matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the tree (graph theory), forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs. Definition A matroid may be defined as a family of finite sets (called the "independent sets" of the matroid) that is closed under subsets and that satisfies the "exchange property": if sets A and B are both independent, and A is larger than B, then there is an element x\in A\setminus B such that B\cup\ remains independent. If G is an undirected graph, and F is the family of sets of edges that form forests in G, then ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matroid
In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or ''flats''. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terms used in both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory, and coding theory. Definition There are many Cryptomorphism, equivalent ways to define a (finite) matroid. Independent sets In terms of independence, a finite matroid M is a pair (E, \mathcal), where E is a finite set (called the ''gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Structure Theorem
In mathematics, the graph structure theorem is a major result in the area of graph theory. The result establishes a deep and fundamental connection between the theory of graph minors and topological embeddings. The theorem is stated in the seventeenth of a series of 23 papers by Neil Robertson and Paul Seymour. Its proof is very long and involved. and are surveys accessible to nonspecialists, describing the theorem and its consequences. Setup and motivation for the theorem A minor of a graph is any graph that is isomorphic to a graph that can be obtained from a subgraph of by contracting some edges. If does ''not'' have a graph as a minor, then we say that is -free. Let be a fixed graph. Intuitively, if is a huge -free graph, then there ought to be a "good reason" for this. The graph structure theorem provides such a "good reason" in the form of a rough description of the structure of . In essence, every -free graph suffers from one of two structural deficien ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clique-sum
In graph theory, a branch of mathematics, a clique sum (or clique-sum) is a way of combining two graphs by gluing them together at a clique (graph theory), clique, analogous to the connected sum operation in topology. If two graphs ''G'' and ''H'' each contain cliques of equal size, the clique-sum of ''G'' and ''H'' is formed from their disjoint union of graphs, disjoint union by identifying pairs of vertices in these two cliques to form a single shared clique, and then deleting all the clique edges (the original definition, based on the notion of set sum) or possibly deleting some of the clique edges (a loosening of the definition). A ''k''-clique-sum is a clique-sum in which both cliques have exactly (or sometimes, at most) ''k'' vertices. One may also form clique-sums and ''k''-clique-sums of more than two graphs, by repeated application of the clique-sum operation. Different sources disagree on which edges should be removed as part of a clique-sum operation. In some contexts, s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wagner Graph
In the mathematical field of graph theory, the Wagner graph is a 3-regular graph with 8 vertices and 12 edges. It is the 8-vertex Möbius ladder graph. Properties As a Möbius ladder, the Wagner graph is nonplanar but has crossing number one, making it an apex graph. It can be embedded without crossings on a torus or projective plane, so it is also a toroidal graph. It has girth 4, diameter 2, radius 2, chromatic number 3, chromatic index 3 and is both 3- vertex-connected and 3- edge-connected. The Wagner graph has 392 spanning trees; it and the complete bipartite graph have the most spanning trees among all cubic graphs with the same number of vertices. The Wagner graph is a vertex-transitive graph but is not edge-transitive. Its full automorphism group is isomorphic to the dihedral group of order 16, the group of symmetries of an octagon, including both rotations and reflections. The characteristic polynomial of the Wagner graph is :(x-3)(x-1)^2(x+1)(x^2+2x-1)^2. It is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Path (graph Theory)
In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges). A directed path (sometimes called dipath) in a directed graph is a finite or infinite sequence of edges which joins a sequence of distinct vertices, but with the added restriction that the edges be all directed in the same direction. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See e.g. , , or . cover more advanced algorithmic topics concerning paths in graphs. Definitions Walk, trail, and path * A walk is a finite or infinite sequence of edges which joins a sequence of vertices. : Let be a graph. A finite walk is a sequence of edges for which there is a sequence of vertices such that ''Φ''(''e''''i'') = for . is the ''vertex sequence'' of the walk. The walk is ''closed'' if ''v''1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subdivision (graph Theory)
In graph theory, two graphs G and G' are homeomorphic if there is a graph isomorphism from some subdivision of G to some subdivision of G'. If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depicted in diagrams), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if their diagrams are homeomorphic in the topological sense. Subdivision and smoothing In general, a subdivision of a graph ''G'' (sometimes known as an expansion) is a graph resulting from the subdivision of edges in ''G''. The subdivision of some edge ''e'' with endpoints yields a graph containing one new vertex ''w'', and with an edge set replacing ''e'' by two new edges, and . For directed edges, this operation shall preserve their propagating direction. For example, the edge ''e'', with endpoints : can be subdivided into two edges, ''e''1 and ''e''2, connecting to a new vertex ''w'' of degree-2, or indegree-1 and o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kuratowski's Theorem
In graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a Glossary of graph theory#Subgraphs, subgraph that is a subdivision (graph theory), subdivision of K_5 (the complete graph on five vertex (graph theory), vertices) or of K_ (a complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph). Statement A planar graph is a graph whose vertices can be represented by points in the Euclidean plane, and whose edges can be represented by simple curves in the same plane connecting the points representing their endpoints, such that no two curves intersect except at a common endpoint. Planar graphs are often graph drawing, drawn with straight line segments representing their edges, but by Fáry's theorem this makes no difference to their graph-theoretic characterizat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |