Vortex-induced Vibration
   HOME
*



picture info

Vortex-induced Vibration
In fluid dynamics, vortex-induced vibrations (VIV) are motions induced on bodies interacting with an external fluid flow, produced by, or the motion producing, periodic irregularities on this flow. A classic example is the VIV of an underwater cylinder. How this happens can be seen by putting a cylinder into the water (a swimming-pool or even a bucket) and moving it through the water in a direction perpendicular to its axis. Since real fluids always present some viscosity, the flow around the cylinder will be slowed while in contact with its surface, forming a so-called boundary layer. At some point, however, that layer can separate from the body because of its excessive curvature. A vortex is then formed, changing the pressure distribution along the surface. When the vortex does not form symmetrically around the body (with respect to its midplane), different lift forces develop on each side of the body, thus leading to motion transverse to the flow. This motion changes the natu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

FIV Cylindre
Feline immunodeficiency virus (FIV) is a ''Lentivirus'' that affects cats worldwide, with 2.5% to 4.4% of felines being infected. FIV was first Isolation (microbiology), isolated in 1986, by Niels C Pedersen and Janet K. Yamamoto at the UC Davis School of Veterinary Medicine in a colony of cats that had a high prevalence of opportunistic infections and Degenerative disease, degenerative conditions and was originally called Feline T-lymphotropic virus. It has since been identified in Cat, domestic cats. It has been suggested FIV originated in Africa and has since spread to feline species worldwide. Effects FIV compromises the immune system of cats by infecting many cell types, including CD4+ T cell, CD4+ and Cytotoxic T cell, CD8+ T lymphocytes, B cell, B lymphocytes, and macrophages. FIV can be tolerated well by cats, but can eventually lead to debilitation of the immune system in its feline hosts by the infection and exhaustion of T-helper (CD4+) cells. FIV and HIV are both le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Analytical Dynamics
In classical mechanics, analytical dynamics, also known as classical dynamics or simply dynamics, is concerned with the relationship between motion of bodies and its causes, namely the forces acting on the bodies and the properties of the bodies, particularly mass and moment of inertia. The foundation of modern-day dynamics is Newtonian mechanics and its reformulation as Lagrangian mechanics and Hamiltonian mechanics. History The field has a long and important history, as remarked by Hamilton: "The theoretical development of the laws of motion of bodies is a problem of such interest and importance that it has engaged the attention of all the eminent mathematicians since the invention of the dynamics as a mathematical science by Galileo, and especially since the wonderful extension which was given to that science by Newton." William Rowan Hamilton, 1834 (Transcribed in ''Classical Mechanics'' by J.R. Taylor, p. 237) Some authors (for example, Taylor (2005) and Greenwood (19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kinematics
Kinematics is a subfield of physics, developed in classical mechanics, that describes the Motion (physics), motion of points, Physical object, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics (physics), kinetics, not kinematics. For further details, see analytical dynamics. Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Frequency
The fundamental frequency, often referred to simply as the ''fundamental'', is defined as the lowest frequency of a periodic waveform. In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present. In terms of a superposition of sinusoids, the fundamental frequency is the lowest frequency sinusoidal in the sum of harmonically related frequencies, or the frequency of the difference between adjacent frequencies. In some contexts, the fundamental is usually abbreviated as 0, indicating the lowest frequency counting from zero. In other contexts, it is more common to abbreviate it as 1, the first harmonic. (The second harmonic is then 2 = 2⋅1, etc. In this context, the zeroth harmonic would be 0  Hz.) According to Benward's and Saker's ''Music: In Theory and Practice'': Explanation All sinusoidal and many non-sinusoidal waveforms repeat exactly over time – they are periodic. The period of a waveform is the smallest value of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vortex Shedding
In fluid dynamics, vortex shedding is an oscillating flow that takes place when a fluid such as air or water flows past a bluff (as opposed to streamlined) body at certain velocities, depending on the size and shape of the body. In this flow, vortices are created at the back of the body and detach periodically from either side of the body forming a Kármán vortex street. The fluid flow past the object creates alternating low-pressure vortices on the downstream side of the object. The object will tend to move toward the low-pressure zone. If the bluff structure is not mounted rigidly and the frequency of vortex shedding matches the resonance frequency of the structure, then the structure can begin to resonate, vibrating with harmonic oscillations driven by the energy of the flow. This vibration is the cause for overhead power line wires humming in the wind, and for the fluttering of automobile whip radio antennas at some speeds. Tall chimneys constructed of thin-walled steel t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vincenc Strouhal
Vincenc Strouhal (Čeněk Strouhal) (10 April 1850 in Seč – 26 January 1922 in Prague) was a Czech physicist specializing in experimental physics. He was one of the founders of the Institute of Physics of the Czech part of Charles University. He was engaged in hydrodynamic phenomena, acoustics and electric and magnetic properties of steel. Strouhal number Strouhal's major contribution to the fundamentals of fluid mechanics was his discovery in 1878 of the Strouhal number (St). This dimensionless number describing oscillating flow mechanisms was discovered by Strouhal while experimenting in 1878 with wires experiencing vortex shedding and singing in the wind. Named after Strouhal * 7391 Strouhal, a minor planet named after Strouhal in 1983 by the Czech astronomer Antonín Mrkos. * Since 1998, ceremonial ''Strouhal's lecture'' is held every year at the Faculty of Mathematics and Physics, Charles University The Faculty of Mathematics and Physics of Charles University (C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strouhal Number
In dimensional analysis, the Strouhal number (St, or sometimes Sr to avoid the conflict with the Stanton number) is a dimensionless number describing oscillating flow mechanisms. The parameter is named after Vincenc Strouhal, a Czech physicist who experimented in 1878 with wires experiencing vortex shedding and singing in the wind. The Strouhal number is an integral part of the fundamentals of fluid mechanics. The Strouhal number is often given as \text = \frac, where ''f'' is the frequency of vortex shedding, ''L'' is the characteristic length (for example, hydraulic diameter or the airfoil thickness) and ''U'' is the flow velocity. In certain cases, like heaving (plunging) flight, this characteristic length is the amplitude of oscillation. This selection of characteristic length can be used to present a distinction between Strouhal number and reduced frequency: \text = \frac, where ''k'' is the reduced frequency, and ''A'' is amplitude of the heaving oscillation. Fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kármán Vortex Street
In fluid dynamics, a Kármán vortex street (or a von Kármán vortex street) is a repeating pattern of swirling vortices, caused by a process known as vortex shedding, which is responsible for the unsteady separation of flow of a fluid around blunt bodies. It is named after the engineer and fluid dynamicist Theodore von Kármán, and is responsible for such phenomena as the "singing" of suspended telephone or power lines and the vibration of a car antenna at certain speeds. Mathematical modeling of von Kármán vortex street can be performed using different techniques including but not limited to solving the full Navier-Stokes equations with k-epsilon, SST, k-omega and Reynolds stress, and large eddy simulation (LES) turbulence models, by numerically solving some dynamic equations such as the Ginzburg-Landau equation, or by use of a bicomplex variable. Analysis A vortex street will form only at a certain range of flow velocities, specified by a range of Reynolds numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reynolds Number
In fluid mechanics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow ( eddy currents). These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar to turbulent flow and is used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full-size ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bluff Body
In fluid dynamics, the drag coefficient (commonly denoted as: c_\mathrm, c_x or c_) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area. The drag coefficient of any object comprises the effects of the two basic contributors to fluid dynamic drag: skin friction and form drag. The drag coefficient of a lifting airfoil or hydrofoil also includes the effects of lift-induced drag. The drag coefficient of a complete structure such as an aircraft also includes the effects of interference drag. Definition The drag coefficient c_\mathrm d is defined as c_\mathrm d = \dfrac where: * F_\mathrm d is the drag force, which is by definition the force component in the direction of the flow velocity; * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tension Leg Platform
__NOTOC__ A tension-leg platform (TLP) or extended tension leg platform (ETLP) is a vertically moored floating structure normally used for the offshore production of oil or gas, and is particularly suited for water depths greater than 300 metres (about 1000 ft) and less than 1500 metres (about 4900 ft). Use of tension-leg platforms has also been proposed for offshore wind turbines. The platform is permanently moored by means of tethers or tendons grouped at each of the structure's corners. A group of tethers is called a tension leg. A feature of the design of the tethers is that they have relatively high axial stiffness (low elasticity), such that virtually all vertical motion of the platform is eliminated. This allows the platform to have the production wellheads on deck (connected directly to the subsea wells by rigid risers), instead of on the seafloor. This allows a simpler well completion and gives better control over the production from the oil or gas reservoir, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]