Visible Light Photon Counter
   HOME
*





Visible Light Photon Counter
A Visible Light Photon Counter (VLPC) is a photon counting photodetector based on impurity-band conduction in arsenic- doped silicon. They have high quantum efficiency and are able to detect single photons in the visible range of the electromagnetic spectrum. The ability to count the exact number of photons detected is extremely important for quantum key distribution. Rockwell International's Science Center had previously announced the "Solid-State Photomultiplier" (SSPM), a wide-band (0.4–28 µm) detector.M.D. Petroff, M.G. Stapelbroek and W.A. Kleinhans: "Detection of Individual 0.4–28 μm Wavelength Photons via Impurity‐Impact Ionization in a Solid‐State Photomultiplier" ''Applied Physics Letters'' 51(6) pp.406-408 (1987) In the late 1980s a collaboration – initially consisting of Rockwell and UCLA – began developing scintillating-fiber particle trackers for use at the Superconducting Super Collider,M.D. Petroff and M. Atac: "High Energy Particle Trackin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photon Counting
Photon counting is a technique in which individual photons are counted using a single-photon detector (SPD). A single-photon detector emits a pulse of signal for each detected photon, in contrast to a normal photodetector, which generates an analog signal proportional to the photon flux. The number of pulses (but not their amplitude) is counted, giving an integer number of photons detected per measurement interval. The counting efficiency is determined by the quantum efficiency and the system's electronic losses. Many photodetectors can be configured to detect individual photons, each with relative advantages and disadvantages. Common types include photomultipliers, geiger counters, single-photon avalanche diodes, superconducting nanowire single-photon detectors, transition edge sensors, and scintillation counters. Charge-coupled devices can be used. Advantages Photon counting eliminates gain noise, where the proportionality constant between analog signal out and number of pho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reverse Bias
Reverse or reversing may refer to: Arts and media * ''Reverse'' (Eldritch album), 2001 * ''Reverse'' (2009 film), a Polish comedy-drama film * ''Reverse'' (2019 film), an Iranian crime-drama film * ''Reverse'' (Morandi album), 2005 * ''Reverse'' (TV series), a 2017–2018 South Korean television series *"Reverse", a 2014 song by SomeKindaWonderful * REVERSE art gallery, in Brooklyn, NY, US *Reverse tape effects including backmasking, the recording of sound in reverse * '' Reversing: Secrets of Reverse Engineering'', a book by Eldad Eilam *''Tegami Bachi: REVERSE'', the second season of the ''Tegami Bachi'' anime series, 2010 Driving * Reverse gear, in a motor or mechanical transmission * Reversing (vehicle maneuver), reversing the direction of a vehicle * Turning a vehicle through 180 degrees Sports and games *Reverse (American football), a trick play in American football *Reverse swing, a cricket delivery *Reverse (bridge), a type of bid in contract bridge Technology *Revers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Information Science
Quantum information science is an interdisciplinary field that seeks to understand the analysis, processing, and transmission of information using quantum mechanics principles. It combines the study of Information science with quantum effects in physics. It includes theoretical issues in computational models and more experimental topics in quantum physics, including what can and cannot be done with quantum information. The term quantum information theory is also used, but it fails to encompass experimental research, and can be confused with a subfield of quantum information science that addresses the processing of quantum information. Scientific and engineering studies To understand quantum teleportation, quantum entanglement and the manufacturing of quantum computer hardware requires a thorough understanding of quantum physics and engineering. Since 2010s, there has been remarkable progress in manufacturing quantum computers, with companies like Google and IBM investing heavily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Muon Ionization Cooling Experiment
The International Muon Ionization Cooling Experiment (or MICE) is a high energy physics experiment at the Rutherford Appleton Laboratory. The experiment is a recognized CERN experiment (RE11). MICE is designed to demonstrate ionization cooling of muons. This is a process whereby the emittance of a beam is reduced in order to reduce the beam size, so that more muons can be accelerated in smaller aperture accelerators and with fewer focussing magnets. This might enable the construction of high intensity muon accelerators, for example for use as a Neutrino Factory or Muon Collider. MICE will reduce the transverse emittance of a muon beam over a single 7 m cooling cell and measure that reduction. The original MICE design was based on a scheme outlined in Feasibility Study II., it was revised significantly in 2014. Pions will be produced from a target in the ISIS neutron source and transported along a beamline where most will decay to muons before entering MICE. Cooling is tested with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ionization Cooling
In accelerator physics, ionization cooling is a physical process for reducing the beam emittance of a charged particle beam ("cooling") by passing the particles through some material, reducing their momentum as they ionize atomic electrons in the material. Thus the normalised beam emittance is reduced. By re-accelerating the beam, for example in an RF cavity, the longitudinal momentum may be restored without replacing transverse momentum. Thus overall the angular spread and hence the geometric emittance in the beam will be reduced. Ionization cooling can be spoiled by stochastic physical processes. Multiple Coulomb scattering of muons as well as nuclear scattering of protons and ions can reduce the cooling or even lead to net heating transverse to the direction of beam motion. In addition, energy straggling can cause heating parallel to the direction of beam motion. Muon cooling The primary use of ionization cooling is envisaged to be for cooling of muon beams. This is because ion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Muon
A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles; that is, it is a fundamental particle. The muon is an unstable subatomic particle with a mean lifetime of , much longer than many other subatomic particles. As with the decay of the non-elementary neutron (with a lifetime around 15 minutes), muon decay is slow (by subatomic standards) because the decay is mediated only by the weak interaction (rather than the more powerful strong interaction or electromagnetic interaction), and because the mass difference between the muon and the set of its decay products is small, providing few kinetic degrees of freedom for decay. Muon decay almost always produces at least three particles, which must include an electron o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

D0 Experiment
D, or d, is the fourth letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''dee'' (pronounced ), plural ''dees''. History The Semitic letter Dāleth may have developed from the logogram for a fish or a door. There are many different Egyptian hieroglyphs that might have inspired this. In Semitic, Ancient Greek and Latin, the letter represented ; in the Etruscan alphabet the letter was archaic, but still retained (see letter B). The equivalent Greek letter is Delta, Δ. Architecture The minuscule (lower-case) form of 'd' consists of a lower-story left bowl and a stem ascender. It most likely developed by gradual variations on the majuscule (capital) form 'D', and today now composed as a stem with a full lobe to the right. In handwriting, it was common to start the arc to the left of the vertical stroke, resulting in a serif at the top of the arc. This serif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nanoseconds
A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, of a second, or 10 seconds. The term combines the SI prefix ''nano-'' indicating a 1 billionth submultiple of an SI unit (e.g. nanogram, nanometre, etc.) and ''second'', the primary unit of time in the SI. A nanosecond is equal to 1000 picoseconds or  microsecond. Time units ranging between 10 and 10 seconds are typically expressed as tens or hundreds of nanoseconds. Time units of this granularity are commonly found in telecommunications, pulsed lasers, and related aspects of electronics. Common measurements * 0.001 nanoseconds – one picosecond * 0.5 nanoseconds – the half-life of beryllium-13. * 0.96 nanoseconds – 100 Gigabit Ethernet Interpacket gap * 1.0 nanosecond – cycle time of an electromagnetic wave with a frequency of 1 GHz (1 hertz). * 1.0 nanosecond – electromagnetic wavelength of 1 light-nanosecond. Equi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Temporal Resolution
Temporal resolution (TR) refers to the discrete resolution of a measurement with respect to time. Physics Often there is a trade-off between the temporal resolution of a measurement and its spatial resolution, due to Heisenberg's uncertainty principle. In some contexts, such as particle physics, this trade-off can be attributed to the finite speed of light and the fact that it takes a certain period of time for the photons carrying information to reach the observer. In this time, the system might have undergone changes itself. Thus, the longer the light has to travel, the lower the temporal resolution. Technology Computing In another context, there is often a tradeoff between temporal resolution and computer storage. A transducer may be able to record data every millisecond, but available storage may not allow this, and in the case of 4D PET imaging the resolution may be limited to several minutes. Electronic displays In some applications, temporal resolution may instead ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryogenic
In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cryogenic” by accepting a threshold of 120 K (or –153 °C) to distinguish these terms from the conventional refrigeration. This is a logical dividing line, since the normal boiling points of the so-called permanent gases (such as helium, hydrogen, neon, nitrogen, oxygen, and normal air) lie below 120K while the Freon refrigerants, hydrocarbons, and other common refrigerants have boiling points above 120K. The U.S. National Institute of Standards and Technology considers the field of cryogenics as that involving temperatures below -153 Celsius (120K; -243.4 Fahrenheit) Discovery of superconducting materials with critical temperatures significantly above the boiling point of nitrogen has provided new interest in reliable, low cost methods ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bandgap
In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (in electron volts) between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. It is the energy required to promote a valence electron bound to an atom to become a conduction electron, which is free to move within the crystal lattice and serve as a charge carrier to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the valence band is completely full and the conduction band is completely empty, then electrons cannot move within the solid because there are no available states. If the electrons are not free to move within the crystal lattice, then there is no generated current due to no net charge carrier mobility. However, if some electrons transfer from the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Single-photon Avalanche Diode
A single-photon avalanche diode (SPAD) is a solid-state photodetector within the same family as photodiodes and avalanche photodiodes (APDs), while also being fundamentally linked with basic diode behaviours. As with photodiodes and APDs, a SPAD is based around a semi-conductor p-n junction that can be illuminated with ionizing radiation such as gamma, x-rays, beta and alpha particles along with a wide portion of the electromagnetic spectrum from ultraviolet (UV) through the visible wavelengths and into the infrared (IR). In a photodiode, with a low reverse bias voltage, the leakage current changes linearly with absorption of photons, i.e. the liberation of current carriers (electrons and/or holes) due to the internal photoelectric effect. However, in a SPAD, the reverse bias is so high that a phenomenon called impact ionisation occurs which is able to cause an avalanche current to develop. Simply, a photo-generated carrier is accelerated by the electric field in the device to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]