Visco-elastic Jets
   HOME
*



picture info

Visco-elastic Jets
Visco-elastic jets are the jets of viscoelastic fluids, i.e. fluids that disobey Newton's law of Viscocity. A Viscoelastic fluid that returns to its original shape after the applied stress is released. Everybody has witnessed a situation where a liquid is poured out of an orifice at a given height and speed, and it hits a solid surface. For example, – dropping of honey onto a bread slice, or pouring shower gel onto one's hand. Honey is a purely viscous, Newtonian fluid: the jet thins continuously and coils regularly. Jets of non-Newtonian Viscoelastic fluids show a novel behaviour. A viscoelastic jet breaks up much more slowly than a Newtonian jet. Typically, it evolves into the so-called beads-on-string structure, where large drops are connected by thin threads. The jet widens at its base (reverse swell phenomenon) and folds back and forth on itself. The slow breakup process provides the viscoelastic jet sufficient time to exhibit some new phenomena, including drop migra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Draining
Draining may refer to: * Drainage, the natural or artificial process of water removal from land * the urban exploration of sewers and storm drains See also * Drain (other) {{Disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Merging
Merge, merging, or merger may refer to: Concepts * Merge (traffic), the reduction of the number of lanes on a road * Merge (linguistics), a basic syntactic operation in generative syntax in the Minimalist Program * Merger (politics), the combination of two or more political or administrative entities * Merger (phonology), phonological change whereby originally separate phonemes come to be pronounced exactly the same * Mergers and acquisitions, the buying, selling, dividing and combining of different companies Arts, entertainment, and media * Merger (band), a 1970s English reggae band * Merging (play), ''Merging'' (play), a 2007 one act play written by Charles Messina * Merge Records, an indie-rock record label based in Chapel Hill, North Carolina * ''Merge'', a List of programs broadcast by Lifetime, program broadcast by Lifetime Computer science * Merge (version control), to combine simultaneously changed files in revision control * Merge (software), a Virtual Machine Monito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oscillation
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such as those between atoms. Oscillations occur not only in mechanical systems but also in dynamic systems in virtually every area of science: for example the beating of the human heart (for circulation), business cycles in economics, predator–prey population cycles in ecology, geothermal geysers in geology, vibration of strings in guitar and other string instruments, periodic firing of nerve cells in the brain, and the periodic swelling of Cepheid variable stars in astronomy. The term ''vibration'' is precisely used to describe a mechanical oscillation. Oscillation, especially rapid oscillation, may be an undesirable phenomenon in proc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscocity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reynolds Number
In fluid mechanics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow ( eddy currents). These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar to turbulent flow and is used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full-size ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Deborah Number
The Deborah number (De) is a dimensionless number, often used in rheology to characterize the fluidity of materials under specific flow conditions. It quantifies the observation that given enough time even a solid-like material might flow, or a fluid-like material can act solid when it is deformed rapidly enough. Materials that have low relaxation times flow easily and as such show relatively rapid stress decay. Definition The Deborah number is the ratio of fundamentally different characteristic times. The Deborah number is defined as the ratio of the time it takes for a material to adjust to applied stresses or deformations, and the characteristic time scale of an experiment (or a computer simulation) probing the response of the material: : \mathrm = \frac, where stands for the relaxation time and for the "time of observation", typically taken to be the time scale of the process. The numerator, relaxation time, is the time needed for a reference amount of deformation to occur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elasticity (physics)
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to ''plasticity'', in which the object fails to do so and instead remains in its deformed state. The physical reasons for elastic behavior can be quite different for different materials. In metals, the atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state. For rubbers and other polymers, elasticity is caused by the stretching of polymer chains when forces are applied. Hooke's law states that the force required to deform elastic objects should be directly proportional to the distance of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]