Virtual Concatenation
   HOME
*





Virtual Concatenation
Virtual concatenation (VCAT) is an inverse multiplexing technique creating a large capacity payload container distributed over multiple smaller capacity TDM signals. These signals may be transported or routed independently. Virtual concatenation has been defined for SONET/SDH, OTN and PDH path signals. Alternate SONET/SDH concatenation techniques are contiguous concatenation and arbitrary concatenation. Variable bit data streaming Virtual concatenation is considered the primary enhancement to voice optimized SONET/SDH, in order to support the transport of variable bit data streams. Other recent SONET/SDH enhancements include Link Capacity Adjustment Scheme (LCAS), and the Generic Framing Procedure (GFP). In conjunction with LCAS and GFP, Virtual Concatenation gives the advantage of splitting the required bandwidth equally among a set number of sub paths called Virtual Tributaries (VT). The Virtual Concatenation is specified in ITU-T Recommendations G.707 (2007) and G.783 (200 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverse Multiplexing
An inverse multiplexer (often abbreviated to inverse MUX or IMUX) allows a data stream to be broken into multiple lower data rate communication links. An inverse multiplexer differs from a demultiplexer because the multiple output streams from the former stay inter-related, whereas those from the latter are unrelated. An inverse multiplexer is the opposite of a multiplexer in that it divides one high-speed link into multiple low-speed links, whereas a multiplexer combines multiple low-speed links into one high-speed link. This provides an end to end connection of several times the data rate available on each of the low rate data links. Note that, as with multiplexers, links are often used in bi-directional pairs and, at either end of the link, an inverse multiplexer will be combined with its reverse (an inverse demultiplexer) and still be called an ''inverse MUX''. Inverse multiplexers are used, for example, to combine a number of ISDN channels together into one high rate c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time-division Multiplexing
Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time in an alternating pattern. This method transmits two or more digital signals or analog signals over a common channel. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century, but found its most common application in digital telephony in the second half of the 20th century. History Time-division multiplexing was first developed for applications in telegraphy to route multiple transmissions simultaneously over a single transmission line. In the 1870s, Émile Baudot developed a time-multiplexing system of multiple Hughes telegraph machines. In 1944, the Britis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SONET
Synchronous optical networking (SONET) and synchronous digital hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization. SONET and SDH, which are essentially the same, were originally designed to transport circuit mode communications (e.g., DS1, DS3) from a variety of different sources, but they were primarily designed to support real-time, uncompressed, circuit-switched voice encoded in PCM format. The primary difficulty in doing this prior to SONET/SDH was that the synchronization sources of these various circuits were different. This meant that each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronous Digital Hierarchy
Synchronous optical networking (SONET) and synchronous digital hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization. SONET and SDH, which are essentially the same, were originally designed to transport circuit mode communications (e.g., DS1, DS3) from a variety of different sources, but they were primarily designed to support real-time, uncompressed, circuit-switched voice encoded in PCM format. The primary difficulty in doing this prior to SONET/SDH was that the synchronization sources of these various circuits were different. This meant that each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plesiochronous Digital Hierarchy
The plesiochronous digital hierarchy (PDH) is a technology used in telecommunications networks to transport large quantities of data over digital transport equipment such as fibre optic and microwave radio systems. The term ''plesiochronous'' is derived from Greek ''plēsios'', meaning near, and ''chronos'', time, and refers to the fact that PDH networks run in a state where different parts of the network are nearly, but not quite perfectly, synchronized. Backbone transport networks replaced PDH networks with synchronous digital hierarchy (SDH) or synchronous optical networking (SONET) equipment over the ten years ending around the turn of the millennium (2000), whose floating payloads relaxed the more stringent timing requirements of PDH network technology. The cost in North America was $4.5 billion in 1998 alone, p. 171. PDH allows transmission of data streams that are nominally running at the same rate, but allowing some variation on the speed around a nominal rate. By ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LCAS
Link Capacity Adjustment Scheme or LCAS is a method to dynamically increase or decrease the bandwidth of virtual concatenated containers. The LCAS protocol is specified in ITU-T The ITU Telecommunication Standardization Sector (ITU-T) is one of the three sectors (divisions or units) of the International Telecommunication Union (ITU). It is responsible for coordinating standards for telecommunications and Information Commu ... G.7042. It allows on-demand increase or decrease of the bandwidth of the virtual concatenated group in a ''hitless'' manner. This brings ''bandwidth-on-demand'' capability for data clients like Ethernet when mapped into TDM containers. LCAS is also able to temporarily remove failed members from the virtual concatenation group. A failed member will automatically cause a decrease of the bandwidth and after repair the bandwidth will increase again in a hitless fashion. Together with diverse routing this provides survivability of data traffic without requiring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Generic Framing Procedure
{{Unreferenced, date=December 2009 Generic Framing Procedure (GFP) is a multiplexing technique defined by ITU-T G.7041. This allows mapping of variable length, higher-layer client signals over a circuit switched transport network like OTN, SDH/SONET or PDH. The client signals can be protocol data unit (PDU) oriented (like IP/ PPP or Ethernet Media Access Control) or can be block-code oriented (like Fibre Channel). There are two modes of GFP: Generic Framing Procedure - Framed (GFP-F) and Generic Framing Procedure - Transparent (GFP-T): * GFP-F maps each client frame into a single GFP frame. GFP-F is used where the client signal is framed or packetized by the client protocol. * GFP-T, on the other hand, allows mapping of multiple 8B/10B block-coded client data streams into an efficient 64B/65B block code for transport within a GFP frame. GFP utilizes a length/ HEC-based frame delineation mechanism that is more robust than that used by High-Level Data Link Control (HDLC), which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virtual Tributary
Virtual may refer to: * Virtual (horse), a thoroughbred racehorse * Virtual channel, a channel designation which differs from that of the actual radio channel (or range of frequencies) on which the signal travels * Virtual function, a programming function or method whose behaviour can be overridden within an inheriting class by a function with the same signature * Virtual machine, the virtualization of a computer system * Virtual meeting, or web conferencing * Virtual memory, a memory management technique that abstracts the memory address space in a computer * Virtual particle, a type of short-lived particle of indeterminate mass * Virtual reality (virtuality), computer programs with an interface that gives the user the impression that they are physically inside a simulated space * Virtual world, a computer-based simulated environment populated by many users who can create a personal avatar, and simultaneously and independently explore the world, participate in its activities and co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gigabit Ethernet
In computer networking, Gigabit Ethernet (GbE or 1 GigE) is the term applied to transmitting Ethernet frames at a rate of a gigabit per second. The most popular variant, 1000BASE-T, is defined by the IEEE 802.3ab standard. It came into use in 1999, and has replaced Fast Ethernet in wired local networks due to its considerable speed improvement over Fast Ethernet, as well as its use of cables and equipment that are widely available, economical, and similar to previous standards. History Ethernet was the result of research conducted at Xerox PARC in the early 1970s, and later evolved into a widely implemented physical and link layer protocol. Fast Ethernet increased the speed from 10 to 100 megabits per second (Mbit/s). Gigabit Ethernet was the next iteration, increasing the speed to 1000 Mbit/s. * The initial standard for Gigabit Ethernet was produced by the IEEE in June 1998 as IEEE 802.3z, and required optical fiber. 802.3z is commonly referred to as 1000BASE-X, whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]