Vicsek Fractal
   HOME
*



picture info

Vicsek Fractal
In mathematics the Vicsek fractal, also known as Vicsek snowflake or box fractal, is a fractal arising from a construction similar to that of the Sierpinski carpet, proposed by Tamás Vicsek. It has applications including as compact antennas, particularly in cellular phones. ''Box fractal'' also refers to various iterated fractals created by a square or rectangular grid with various boxes removed or absent and, at each iteration, those present and/or those absent have the previous image scaled down and drawn within them. The Sierpinski triangle may be approximated by a box fractal with one corner removed. The Sierpinski carpet is a box fractal with the middle square removed. Construction The basic square is decomposed into nine smaller squares in the 3-by-3 grid. The four squares at the corners and the middle square are left, the other squares being removed. The process is repeated recursively for each of the five remaining subsquares. The Vicsek fractal is the set obta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Box Fractal
In mathematics the Vicsek fractal, also known as Vicsek snowflake or box fractal, is a fractal arising from a construction similar to that of the Sierpinski carpet, proposed by Tamás Vicsek. It has applications including as compact fractal antenna, antennas, particularly in cellular phones. ''Box fractal'' also refers to various iterated fractals created by a square tiling, square or rectangular grid with various boxes removed or absent and, at each iteration, those present and/or those absent have the previous image scaled down and drawn within them. The Sierpinski triangle may be approximated by a box fractal with one corner removed. The Sierpinski carpet is a box fractal with the middle square removed. Construction The basic square is decomposed into nine smaller squares in the 3-by-3 grid. The four squares at the corners and the middle square are left, the other squares being removed. The process is repeated recursively for each of the five remaining subsquares. The Vics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-flake
An ''n''-flake, polyflake, or Sierpinski ''n''-gon, is a fractal constructed starting from an ''n''-gon. This ''n''-gon is replaced by a flake of smaller ''n''-gons, such that the scaled polygons are placed at the vertices, and sometimes in the center. This process is repeated recursively to result in the fractal. Typically, there is also the restriction that the ''n''-gons must touch yet not overlap. In two dimensions The most common variety of ''n''-flake is two-dimensional (in terms of its topological dimension) and is formed of polygons. The four most common special cases are formed with triangles, squares, pentagons, and hexagons, but it can be extended to any polygon. Its boundary is the von Koch curve of varying types – depending on the ''n''-gon – and infinitely many Koch curves are contained within. The fractals occupy zero area yet have an infinite perimeter. The formula of the scale factor ''r'' for any ''n''-flake is: :r = \frac where cosine is evalua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Fractals By Hausdorff Dimension
According to Benoit Mandelbrot, "A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension." Presented here is a list of fractals, ordered by increasing Hausdorff dimension, to illustrate what it means for a fractal to have a low or a high dimension. Deterministic fractals Random and natural fractals See also * Fractal dimension * Hausdorff dimension * Scale invariance Notes and references Further reading * * * * External links The fractals on MathworldOther fractals on Paul Bourke's websiteFractals on mathcurve.com* ttps://web.archive.org/web/20060923100014/http://library.thinkquest.org/26242/full/index.html Fractals unleashedIFStile - software that computes the dimension of the boundary of self-affine tiles {{DEFAULTSORT:Fractals By Hausdorff Dimension Hausdorff Dimension Hausdorff Dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cross Crosslet
A number of cross symbols were developed for the purpose of the emerging system of heraldry, which appeared in Western Europe in about 1200. This tradition is partly in the use of the Christian cross an emblem from the 11th century, and increasingly during the age of the Crusades. Many cross variants were developed in the classical tradition of heraldry during the late medieval and early modern periods. Heraldic crosses are inherited in modern iconographic traditions and are used in numerous national flags. History The Christian cross emblem (Latin cross or Greek cross) was used from the 5th century, deriving from a T-shape representing the gibbet (''stauros'', ''crux'') of the crucifixion of Jesus in use from at least the 2nd century. The globus cruciger and the staurogram is used in Byzantine coins and seals during the Heraclian period (6th century). Under the Heraclian dynasty (7th century), coins also depict simply crosses potent, patty, or pommy. The cross was used as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cross Section (geometry)
In geometry and science, a cross section is the non-empty intersection of a solid body in three-dimensional space with a plane, or the analog in higher-dimensional spaces. Cutting an object into slices creates many parallel cross-sections. The boundary of a cross-section in three-dimensional space that is parallel to two of the axes, that is, parallel to the plane determined by these axes, is sometimes referred to as a contour line; for example, if a plane cuts through mountains of a raised-relief map parallel to the ground, the result is a contour line in two-dimensional space showing points on the surface of the mountains of equal elevation. In technical drawing a cross-section, being a projection of an object onto a plane that intersects it, is a common tool used to depict the internal arrangement of a 3-dimensional object in two dimensions. It is traditionally crosshatched with the style of crosshatching often indicating the types of materials being used. With com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flug Um Das Vicsek-Fraktal (3D) 4500p50 20210103
Flug is a surname. Notable people with the surname include: *Karnit Flug (born 1955), Polish-born Israeli economist and government official *Noach Flug (1925–2011), Israeli economist and diplomat *Vasily Flug Vasily Yegorovich Flug (March 19, 1860 – December 3, 1955) was an Imperial Russian Army General of the Infantry. A career military officer, he served in the Boxer Rebellion, Russo-Japanese War, and World War I, before joining the White movemen ...
(1860–1955), Russian army general {{surname, Flug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


3D Vicsek Fractal
3-D, 3D, or 3d may refer to: Science, technology, and mathematics Relating to three-dimensionality * Three-dimensional space ** 3D computer graphics, computer graphics that use a three-dimensional representation of geometric data ** 3D film, a motion picture that gives the illusion of three-dimensional perception ** 3D modeling, developing a representation of any three-dimensional surface or object ** 3D printing, making a three-dimensional solid object of a shape from a digital model ** 3D display, a type of information display that conveys depth to the viewer ** 3D television, television that conveys depth perception to the viewer ** Stereoscopy, any technique capable of recording three-dimensional visual information or creating the illusion of depth in an image Other uses in science and technology or commercial products * 3D projection * 3D rendering * 3D scanning, making a digital representation of three-dimensional objects * 3D video game (other) * 3-D Secure, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Koch Snowflake
The Koch snowflake (also known as the Koch curve, Koch star, or Koch island) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" by the Swedish mathematician Helge von Koch. The Koch snowflake can be built up iteratively, in a sequence of stages. The first stage is an equilateral triangle, and each successive stage is formed by adding outward bends to each side of the previous stage, making smaller equilateral triangles. The areas enclosed by the successive stages in the construction of the snowflake converge to \tfrac times the area of the original triangle, while the perimeters of the successive stages increase without bound. Consequently, the snowflake encloses a finite area, but has an infinite perimeter. Construction The Koch snowflake can be constructed by starting with an equilateral triangle, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perimeter
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden. The perimeter of a wheel/circle (its circumference) describes how far it will roll in one revolution. Similarly, the amount of string wound around a spool is related to the spool's perimeter; if the length of the string was exact, it would equal the perimeter. Formulas The perimeter is the distance around a shape. Perimeters for more general shapes can be calculated, as any path, with \int_0^L \mathrms, where L is the length of the path and ds is an infinitesimal line element. Both of these must be replaced by algebraic forms in order to be practically calculated. If the perimeter is given as a closed piecewise smooth plane curv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]