Vicious Circle Principle
   HOME
*





Vicious Circle Principle
The vicious circle principle is a principle that was endorsed by many predicativist mathematicians in the early 20th century to prevent contradictions. The principle states that no object or property may be introduced by a definition that depends on that object or property itself. In addition to ruling out definitions that are explicitly circular (like "an object has property ''P'' iff it is not next to anything that has property ''P''"), this principle rules out definitions that quantify over domains which include the entity being defined. Thus, it blocks Russell's paradox, which defines a set ''R'' that contains all sets which don't contain themselves. This definition is blocked because it defines a new set in terms of the totality of all sets, of which this new set would itself be a member. However, it also blocks one standard definition of the natural numbers. First, we define a property as being "hereditary" if, whenever a number ''n'' has the property, so does ''n''+1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Impredicativity
In mathematics, logic and philosophy of mathematics, something that is impredicative is a self-referencing definition. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more commonly) another set that contains the thing being defined. There is no generally accepted precise definition of what it means to be predicative or impredicative. Authors have given different but related definitions. The opposite of impredicativity is predicativity, which essentially entails building stratified (or ramified) theories where quantification over lower levels results in variables of some new type, distinguished from the lower types that the variable ranges over. A prototypical example is intuitionistic type theory, which retains ramification so as to discard impredicativity. Russell's paradox is a famous example of an impredicative construction—namely the set of all sets that do not contain themselves. The paradox is that su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Theory
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation. A common one is Thierry Coquand's Calculus of Inductive Constructions. History Type theory was created to avoid a paradox in a mathematical foundation based on naive set theory and formal logic. Russell's paradox, which was discovered by Bertrand Russell, existed because a set could be defined using "all possible sets", which included itself. Between 1902 and 1908, Bertrand Russell proposed various "theories of type" to fix the problem. By 1908 Russell arrived at a "ramified" theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Philosophical Logic
Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic. An important issue for philosophical logic is the question of how to classify the great variety of non-classical logical systems, many of which are of rather recent origin. One form of classification often found in the literature is to distinguish between extended logics and deviant logics. Logic itself can be defined as the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Concepts In Logic
Concepts are defined as abstract ideas. They are understood to be the fundamental building blocks of the concept behind principles, thoughts and beliefs. They play an important role in all aspects of cognition. As such, concepts are studied by several disciplines, such as linguistics, psychology, and philosophy, and these disciplines are interested in the logical and psychological structure of concepts, and how they are put together to form thoughts and sentences. The study of concepts has served as an important flagship of an emerging interdisciplinary approach called cognitive science. In contemporary philosophy, there are at least three prevailing ways to understand what a concept is: * Concepts as mental representations, where concepts are entities that exist in the mind (mental objects) * Concepts as abilities, where concepts are abilities peculiar to cognitive agents (mental states) * Concepts as Fregean senses, where concepts are abstract objects, as opposed to mental obje ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Footnotes
A note is a string of text placed at the bottom of a page in a book or document or at the end of a chapter, volume, or the whole text. The note can provide an author's comments on the main text or citations of a reference work in support of the text. Footnotes are notes at the foot of the page while endnotes are collected under a separate heading at the end of a chapter, volume, or entire work. Unlike footnotes, endnotes have the advantage of not affecting the layout of the main text, but may cause inconvenience to readers who have to move back and forth between the main text and the endnotes. In some editions of the Bible, notes are placed in a narrow column in the middle of each page between two columns of biblical text. Numbering and symbols In English, a footnote or endnote is normally flagged by a superscripted number immediately following that portion of the text the note references, each such footnote being numbered sequentially. Occasionally, a number between brack ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hofstadter's Law
Hofstadter's law is a self-referential adage, coined by Douglas Hofstadter in his book '' Gödel, Escher, Bach: An Eternal Golden Braid'' (1979) to describe the widely experienced difficulty of accurately estimating the time it will take to complete tasks of substantial complexity:''Gödel, Escher, Bach: An Eternal Golden Braid''. 20th anniversary ed., 1999, p. 152. . The law is often cited by programmers in discussions of techniques to improve productivity, such as ''The Mythical Man-Month'' or extreme programming. History In 1979, Hofstadter introduced the law in connection with a discussion of chess-playing computers, which at the time were continually being beaten by top-level human players, despite outpacing humans in depth of analysis. Hofstadter wrote: In 1997, the chess computer Deep Blue Deep Blue may refer to: Film * ''Deep Blues: A Musical Pilgrimage to the Crossroads'', a 1992 documentary film about Mississippi Delta blues music * Deep Blue (2001 film), ''D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circular Definition
A circular definition is a description that uses the term(s) being defined as part of the description or assumes that the term(s) being described are already known. There are several kinds of circular definition, and several ways of characterising the term: pragmatic, lexicographic and linguistic. Circular definitions may be unhelpful if the audience must either already know the meaning of the key term, or if the term to be defined is used in the definition itself. Approaches to characterizing circular definitions Pragmatic From a pragmatic point of view, circular definitions may be characterised in terms of new, useful or helpful information: A definition is deficient if the audience must either already know the meaning of the key term, or if the term to be defined is used in the definition itself. Such definitions lead to a need for additional information that motivated someone to look at the definition in the first place and, thus, violate the principle of providing new or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Self-reference
Self-reference occurs in natural or formal languages when a sentence, idea or formula refers to itself. The reference may be expressed either directly—through some intermediate sentence or formula—or by means of some encoding. In philosophy, it also refers to the ability of a subject to speak of or refer to itself, that is, to have the kind of thought expressed by the first person nominative singular pronoun "I" in English. Self-reference is studied and has applications in mathematics, philosophy, computer programming, second-order cybernetics, and linguistics, as well as in humor. Self-referential statements are sometimes paradoxical, and can also be considered recursive. In logic, mathematics and computing In classical philosophy, paradoxes were created by self-referential concepts such as the omnipotence paradox of asking if it was possible for a being to exist so powerful that it could create a stone that it could not lift. The Epimenides paradox, 'All Cretans are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanford Encyclopedia Of Philosophy
The ''Stanford Encyclopedia of Philosophy'' (''SEP'') combines an online encyclopedia of philosophy with peer-reviewed publication of original papers in philosophy, freely accessible to Internet users. It is maintained by Stanford University. Each entry is written and maintained by an expert in the field, including professors from many academic institutions worldwide. Authors contributing to the encyclopedia give Stanford University the permission to publish the articles, but retain the copyright to those articles. Approach and history As of August 5th, 2022, the ''SEP'' has 1,774 published entries. Apart from its online status, the encyclopedia uses the traditional academic approach of most encyclopedias and academic journals to achieve quality by means of specialist authors selected by an editor or an editorial committee that is competent (although not necessarily considered specialists) in the field covered by the encyclopedia and peer review. The encyclopedia was created in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


History Of Type Theory
The type theory was initially created to avoid paradoxes in a variety of formal logics and rewrite systems. Later, type theory referred to a class of formal systems, some of which can serve as alternatives to naive set theory Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike Set theory#Axiomatic set theory, axiomatic set theories, which are defined using Mathematical_logic#Formal_logical_systems, forma ... as a foundation for all mathematics. It has been tied to formal mathematics since '' Principia Mathematica'' to today's proof assistants. 1900–1927 Origin of Russell's theory of types In a letter to Gottlob Frege (1902), Bertrand Russell announced his discovery of the paradox in Frege's Begriffsschrift. Frege promptly responded, acknowledging the problem and proposing a solution in a technical discussion of "levels". To quote Frege: Incidentally, it seems to me that the expression "a predicate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE