Vector Autoregression
   HOME





Vector Autoregression
Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series. VAR models are often used in economics and the natural sciences. Like the autoregressive model, each variable has an equation modelling its evolution over time. This equation includes the variable's lagged (past) values, the lagged values of the other variables in the model, and an error term. VAR models do not require as much knowledge about the forces influencing a variable as do structural models with simultaneous equations. The only prior knowledge required is a list of variables which can be hypothesized to affect each other over time. Specification Definition A VAR model describes the evolution of a set of ''k'' variables, called ''endogenous variables'', over time. Each peri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Process
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology Ecology () is the natural science of the relationships among living organisms and their Natural environment, environment. Ecology considers organisms at the individual, population, community (ecology), community, ecosystem, and biosphere lev ..., neuroscience, physics, image processing, signal processing, stochastic control, control theory, information theory, computer scien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Correlation
In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are '' linearly'' related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the demand curve. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling. However, in g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications is that, unlike the standard deviation, its units differ from the random variable, which is why the standard devi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Main Diagonal
In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix A is the list of entries a_ where i = j. All off-diagonal elements are zero in a diagonal matrix. The following four matrices have their main diagonals indicated by red ones: \begin \color & 0 & 0\\ 0 & \color & 0\\ 0 & 0 & \color\end \qquad \begin \color & 0 & 0 & 0 \\ 0 & \color & 0 & 0 \\ 0 & 0 & \color & 0 \end \qquad \begin \color & 0 & 0 \\ 0 & \color & 0 \\ 0 & 0 & \color \\ 0 & 0 & 0 \end \qquad \begin \color & 0 & 0 & 0 \\ 0 & \color & 0 & 0 \\ 0 & 0 & \color & 0 \\ 0 & 0 & 0 & \color \end Square matrices For a square matrix, the ''diagonal'' (or ''main diagonal'' or ''principal diagonal'') is the diagonal line of entries running from the top-left corner to the bottom-right corner. For a matrix A with row index specified by i and column index specified by j, these would be entries A_ with i = j. For example, the iden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Error
An error (from the Latin , meaning 'to wander'Oxford English Dictionary, s.v. “error (n.), Etymology,” September 2023, .) is an inaccurate or incorrect action, thought, or judgement. In statistics, "error" refers to the difference between the value which has been computed and the correct value. An error could result in failure or in a Deviation (statistics), deviation from the intended performance or behavior. Human behavior One reference differentiates between "error" and "mistake" as follows: In human behavior the norms or expectations for behavior or its consequences can be derived from the intention of the actor or from the expectations of other individuals or from a social grouping or from social norms. (See deviance (sociology), deviance.) Gaffes and faux pas can be labels for certain instances of this kind of error. More serious departures from social norms carry labels such as misbehavior and labels from the legal system, such as misdemeanor and crime. Departures f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or can be trivially determined by the context. I_1 = \begin 1 \end ,\ I_2 = \begin 1 & 0 \\ 0 & 1 \end ,\ I_3 = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end ,\ \dots ,\ I_n = \begin 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end. The term unit matrix has also been widely used, but the term ''identity matrix'' is now standard. The term ''unit matrix'' is ambiguous, because it is also used for a matrix of on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Difference Equation
A matrix difference equation is a difference equation in which the value of a vector (or sometimes, a matrix) of variables at one point in time is related to its own value at one or more previous points in time, using matrices. The order of the equation is the maximum time gap between any two indicated values of the variable vector. For example, :\mathbf x_t = \mathbf_ + \mathbf_ is an example of a second-order matrix difference equation, in which is an vector of variables and and are matrices. This equation is homogeneous because there is no vector constant term added to the end of the equation. The same equation might also be written as :\mathbf x_ = \mathbf_ + \mathbf_ or as :\mathbf x_n = \mathbf_ + \mathbf_ The most commonly encountered matrix difference equations are first-order. Nonhomogeneous first-order case and the steady state An example of a nonhomogeneous first-order matrix difference equation is :\mathbf x_t = \mathbf_ + \mathbf with additive cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stochastic
Stochastic (; ) is the property of being well-described by a random probability distribution. ''Stochasticity'' and ''randomness'' are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; in everyday conversation, however, these terms are often used interchangeably. In probability theory, the formal concept of a '' stochastic process'' is also referred to as a ''random process''. Stochasticity is used in many different fields, including image processing, signal processing, computer science, information theory, telecommunications, chemistry, ecology, neuroscience, physics, and cryptography. It is also used in finance (e.g., stochastic oscillator), due to seemingly random changes in the different markets within the financial sector and in medicine, linguistics, music, media, colour theory, botany, manufacturing and geomorphology. Etymology The word ''stochastic'' in English was originally used as an adjective with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Error Correction Model
An error correction model (ECM) belongs to a category of multiple time series models most commonly used for data where the underlying variables have a long-run common stochastic trend, also known as cointegration. ECMs are a theoretically-driven approach useful for estimating both short-term and long-term effects of one time series on another. The term error-correction relates to the fact that last-period's deviation from a long-run equilibrium, the ''error'', influences its short-run dynamics. Thus ECMs directly estimate the speed at which a dependent variable returns to equilibrium after a change in other variables. History Yule (1926) and Granger and Newbold (1974) were the first to draw attention to the problem of spurious correlation and find solutions on how to address it in time series analysis. Given two completely unrelated but integrated (non-stationary) time series, the regression analysis of one on the other will tend to produce an apparently statistically significa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cointegration
In econometrics, cointegration is a statistical property describing a long-term, stable relationship between two or more time series variables, even if those variables themselves are individually non-stationary (i.e., they have trends). This means that despite their individual fluctuations, the variables move together in the long run, anchored by an underlying equilibrium relationship. More formally, if several time series are individually integrated of order ''d'' (meaning they require ''d'' differences to become stationary) but a linear combination of them is integrated of a lower order, then those time series are said to be cointegrated. That is, if (''X'',''Y'',''Z'') are each integrated of order ''d'', and there exist coefficients ''a'',''b'',''c'' such that is integrated of order less than d, then ''X'', ''Y'', and ''Z'' are cointegrated. Cointegration is a crucial concept in time series analysis, particularly when dealing with variables that exhibit trends, such as ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Of Integration
In statistics, the order of integration, denoted ''I''(''d''), of a time series is a summary statistic, which reports the minimum number of differences required to obtain a covariance-stationary series (i.e., a time series whose mean and autocovariance remain constant over time). The order of integration is a key concept in time series analysis, particularly when dealing with non-stationary data that exhibits trends or other forms of non-stationarity. Integration of order ''d'' A time series is integrated of order ''d'' if :(1-L)^d X_t \ is a stationary process, where L is the lag operator and 1-L is the first difference, i.e. : (1-L) X_t = X_t - X_ = \Delta X. In other words, a process is integrated to order ''d'' if taking repeated differences ''d'' times yields a stationary process. In particular, if a series is integrated of order 0, then (1-L)^0 X_t = X_t is stationary. Constructing an integrated series An ''I''(''d'') process can be constructed by summin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Applied Economics (journal)
''Applied Economics'' is a peer-reviewed academic journal published by Routledge with focus on the application of economic analyses. It is currently published by Routledge and circulates 60 issues per year. It was established in 1969 by the founding Editor Maurice H. Peston. The current editor-in-chief is Mark P. Taylor. Its companion journal is ''Applied Economics Letters ''Applied Economics Letters'' is a peer-reviewed academic journal covering applied economics. It was established in 1994 and is published 21 times per year by Routledge. It is a companion journal to ''Applied Economics''. The editor-in-chief is Ma ...''. It incorporated ''Applied Financial Economics'' from 2015. External links * Economics journals English-language journals Academic journals established in 1969 Routledge academic journals Journals more frequent than weekly {{econ-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]