Uzawa Iteration
   HOME
*





Uzawa Iteration
In numerical mathematics, the Uzawa iteration is an algorithm for solving saddle point problems. It is named after Hirofumi Uzawa and was originally introduced in the context of concave programming. Basic idea We consider a saddle point problem of the form : \begin A & B\\ B^* & \end \begin x_1\\ x_2 \end = \begin b_1\\ b_2 \end, where A is a symmetric positive-definite matrix. Multiplying the first row by B^* A^ and subtracting from the second row yields the upper-triangular system : \begin A & B\\ & -S \end \begin x_1\\ x_2 \end = \begin b_1\\ b_2 - B^* A^ b_1 \end, where S := B^* A^ B denotes the Schur complement. Since S is symmetric positive-definite, we can apply standard iterative methods like the gradient descent method or the conjugate gradient method to : S x_2 = B^* A^ b_1 - b_2 in order to compute x_2. The vector x_1 can be reconstructed by solving : A x_1 = b_1 - B x_2. \, It is possible to update x_1 alongside x_2 during the iteration f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Mathematics
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living cells in medicine and b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Saddle Point
In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. An example of a saddle point is when there is a critical point with a relative minimum along one axial direction (between peaks) and at a relative maximum along the crossing axis. However, a saddle point need not be in this form. For example, the function f(x,y) = x^2 + y^3 has a critical point at (0, 0) that is a saddle point since it is neither a relative maximum nor relative minimum, but it does not have a relative maximum or relative minimum in the y-direction. The name derives from the fact that the prototypical example in two dimensions is a surface that ''curves up'' in one direction, and ''curves down'' in a different direction, resembling a riding saddle or a mountain pass between two peaks forming a landform saddle. In te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hirofumi Uzawa
was a Japanese economist. Biography Uzawa was born on July 21, 1928 in Yonago, Tottori to a farming family. He attended the Tokyo First Middle School (currently the Hibiya High School ) and the First Higher School, Japan (now the University of Tokyo's College of Arts and Sciences faculty). He graduated from the Mathematics Department of the University of Tokyo in 1951; he was a special research student from 1951 to 1953. At that time, he discovered the true nature of economics in the words of John Ruskin, “There is no wealth, but life.” which was quoted in the foreword to by Hajime Kawakami, and decided to study economics. A paper on decentralized economic planning written by him caught the eye of Kenneth Arrow at the Stanford University, he went to study Economics at Stanford University in 1956 with Fulbright fellowship, and became a research assistant, then assistant professor in 1956, then assistant professor at the University of California, Berkeley in 1960, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Positive-definite Matrix
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number z^* Mz is positive for every nonzero complex column vector z, where z^* denotes the conjugate transpose of z. Positive semi-definite matrices are defined similarly, except that the scalars z^\textsfMz and z^* Mz are required to be positive ''or zero'' (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite. A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it defines a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schur Complement
In linear algebra and the theory of matrices, the Schur complement of a block matrix is defined as follows. Suppose ''p'', ''q'' are nonnegative integers, and suppose ''A'', ''B'', ''C'', ''D'' are respectively ''p'' × ''p'', ''p'' × ''q'', ''q'' × ''p'', and ''q'' × ''q'' matrices of complex numbers. Let :M = \left begin A & B \\ C & D \end\right/math> so that ''M'' is a (''p'' + ''q'') × (''p'' + ''q'') matrix. If ''D'' is invertible, then the Schur complement of the block ''D'' of the matrix ''M'' is the ''p'' × ''p'' matrix defined by :M/D := A - BD^C. If ''A'' is invertible, the Schur complement of the block ''A'' of the matrix ''M'' is the ''q'' × ''q'' matrix defined by :M/A := D - CA^B. In the case that ''A'' or ''D'' is singular, substituting a generalized inverse for the inverses on ''M/A'' and ''M/D'' yields the generalized Schur complement. The Schur complement is named after Issai Schur who used it to prove Schur's lemma, although it had been used previous ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gradient Descent
In mathematics, gradient descent (also often called steepest descent) is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function. The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a local maximum of that function; the procedure is then known as gradient ascent. Gradient descent is generally attributed to Augustin-Louis Cauchy, who first suggested it in 1847. Jacques Hadamard independently proposed a similar method in 1907. Its convergence properties for non-linear optimization problems were first studied by Haskell Curry in 1944, with the method becoming increasingly well-studied and used in the following decades. Description Gradient descent is based on the observation that if the multi-variable function F(\mathbf) is def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjugate Gradient Method
In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-definite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems. The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization. It is commonly attributed to Magnus Hestenes and Eduard Stiefel, who programmed it on the Z4, and extensively researched it. The biconjugate gradient method provides a generalization to non-symmetric matrices. Various nonlinear conjugate gradient methods seek minima of nonlinear optimization problems. Description of the problem addressed by co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gram–Schmidt Process
In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process is a method for orthonormalizing a set of vectors in an inner product space, most commonly the Euclidean space equipped with the standard inner product. The Gram–Schmidt process takes a finite, linearly independent set of vectors for and generates an orthogonal set that spans the same ''k''-dimensional subspace of R''n'' as ''S''. The method is named after Jørgen Pedersen Gram and Erhard Schmidt, but Pierre-Simon Laplace had been familiar with it before Gram and Schmidt. In the theory of Lie group decompositions it is generalized by the Iwasawa decomposition. The application of the Gram–Schmidt process to the column vectors of a full column rank matrix yields the QR decomposition (it is decomposed into an orthogonal and a triangular matrix). The Gram–Schmidt process We define the projection operator by \operatorname_ (\mathbf) = \frac , where \langle \mathbf, \mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Krylov Subspace
In linear algebra, the order-''r'' Krylov subspace generated by an ''n''-by-''n'' matrix ''A'' and a vector ''b'' of dimension ''n'' is the linear subspace spanned by the images of ''b'' under the first ''r'' powers of ''A'' (starting from A^0=I), that is, :\mathcal_r(A,b) = \operatorname \, \. Background The concept is named after Russian applied mathematician and naval engineer Alexei Krylov, who published a paper about it in 1931. Properties * \mathcal_r(A,b),A\mathcal_r(A,b)\subset \mathcal_(A,b). * Vectors \ are linearly independent until r, where p(A) is the minimal polynomial of A. Furthermore, there exists a b such that r_0 = \deg (A)/math>. * \mathcal_r(A,b) is a cyclic submodule generated by b of the torsion k /math>-module (k^n)^A, where k^n is the linear space on k. * k^n can be decomposed as the direct sum of Krylov subspaces. Use Krylov subspaces are used in algorithms for finding approximate solutions to high-dimensional linear algebra problems. Many linear dyn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SIAM Journal On Numerical Analysis
The ''SIAM Journal on Numerical Analysis'' (SINUM; until 1965: ''Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical Analysis'') is a peer-reviewed mathematical journal published by the Society for Industrial and Applied Mathematics that covers research on the analysis of numerical methods. The journal was established in 1964 and appears bimonthly. The editor-in-chief is Angela Kunoth. References External links * {{Society for Industrial and Applied Mathematics Numerical Analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods ... Mathematics journals Bimonthly journals Publications established in 1964 English-language journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]