UCS-2
   HOME
*





UCS-2
The Universal Coded Character Set (UCS, Unicode) is a standard set of characters defined by the international standard ISO/IEC 10646, ''Information technology — Universal Coded Character Set (UCS)'' (plus amendments to that standard), which is the basis of many character encodings, improving as characters from previously unrepresented typing systems are added. The UCS has over 1.1 million possible code points available for use/allocation, but only the first 65,536, which is the Basic Multilingual Plane (BMP), had entered into common use before 2000. This situation began changing when the People's Republic of China (PRC) ruled in 2006 that all software sold in its jurisdiction would have to support GB 18030. This required software intended for sale in the PRC to move beyond the BMP. The system deliberately leaves many code points not assigned to characters, even in the BMP. It does this to allow for future expansion or to minimise conflicts with other encoding forms. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


UTF-16
UTF-16 (16-bit computing, 16-bit Unicode Transformation Format) is a character encoding capable of encoding all 1,112,064 valid code points of Unicode (in fact this number of code points is dictated by the design of UTF-16). The encoding is variable-width encoding, variable-length, as code points are encoded with one or two 16-bit ''code units''. UTF-16 arose from an earlier obsolete fixed-width 16-bit encoding, now known as UCS-2 (for 2-byte Universal Character Set), once it became clear that more than 216 (65,536) code points were needed. UTF-16 is used by systems such as the Microsoft Windows API, the Java programming language and JavaScript/ECMAScript. It is also sometimes used for plain text and word-processing data files on Microsoft Windows. It is rarely used for files on Unix-like systems. UTF-16 is often claimed to be more space-efficient than UTF-8 for East Asian languages, since it uses two bytes for characters that take 3 bytes in UTF-8. Since real text contains many s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

UTF-8
UTF-8 is a variable-width encoding, variable-length character encoding used for electronic communication. Defined by the Unicode Standard, the name is derived from ''Unicode'' (or ''Universal Coded Character Set'') ''Transformation Format 8-bit''. UTF-8 is capable of encoding all 1,112,064 valid character code points in Unicode using one to four one-byte (8-bit) code units. Code points with lower numerical values, which tend to occur more frequently, are encoded using fewer bytes. It was designed for backward compatibility with ASCII: the first 128 characters of Unicode, which correspond one-to-one with ASCII, are encoded using a single byte with the same binary value as ASCII, so that valid ASCII text is valid UTF-8-encoded Unicode as well. UTF-8 was designed as a superior alternative to UTF-1, a proposed variable-length encoding with partial ASCII compatibility which lacked some features including self-synchronizing code, self-synchronization and fully ASCII-compatible handling ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unicode
Unicode, formally The Unicode Standard,The formal version reference is is an information technology Technical standard, standard for the consistent character encoding, encoding, representation, and handling of Character (computing), text expressed in most of the world's writing systems. The standard, which is maintained by the Unicode Consortium, defines as of the current version (15.0) 149,186 characters covering 161 modern and historic script (Unicode), scripts, as well as symbols, emoji (including in colors), and non-visual control and formatting codes. Unicode's success at unifying character sets has led to its widespread and predominant use in the internationalization and localization of computer software. The standard has been implemented in many recent technologies, including modern operating systems, XML, and most modern programming languages. The Unicode character repertoire is synchronized with Universal Coded Character Set, ISO/IEC 10646, each being code-for-code id ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GB 18030
GB 18030 is a Chinese government standard, described as ''Information Technology — Chinese coded character set'' and defines the required language and character support necessary for software in China. GB18030 is the registered Internet name for the official character set of the People's Republic of China (PRC) superseding GB2312. As a Unicode Transformation Format (i.e. an encoding of all Unicode code points), GB18030 supports both simplified and traditional Chinese characters. It is also compatible with legacy encodings including GB2312, CP936, and GBK 1.0. In addition to the "GB18030 character encoding", this standard contains requirements about which scripts must be supported, font support, etc. As of 2022, in terms of font implementations, "only the Simplified Chinese fonts of the ''Noto Sans CJK'' (Google), ''Source Han Mono'' (Adobe), and ''Source Han Sans'' (Adobe) typeface families are already compliant with GB 18030-2022 Implementation Level 2 .''Microsoft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Character Repertoire
Character encoding is the process of assigning numbers to graphical characters, especially the written characters of human language, allowing them to be stored, transmitted, and transformed using digital computers. The numerical values that make up a character encoding are known as "code points" and collectively comprise a "code space", a " code page", or a "character map". Early character codes associated with the optical or electrical telegraph could only represent a subset of the characters used in written languages, sometimes restricted to upper case letters, numerals and some punctuation only. The low cost of digital representation of data in modern computer systems allows more elaborate character codes (such as Unicode) which represent most of the characters used in many written languages. Character encoding using internationally accepted standards permits worldwide interchange of text in electronic form. History The history of character codes illustrates the evol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Character Encoding
Character encoding is the process of assigning numbers to Graphics, graphical character (computing), characters, especially the written characters of Language, human language, allowing them to be Data storage, stored, Data communication, transmitted, and Computing, transformed using Digital electronics, digital computers. The numerical values that make up a character encoding are known as "code points" and collectively comprise a "code space", a "code page", or a "Character Map (Windows), character map". Early character codes associated with the optical or electrical Telegraphy, telegraph could only represent a subset of the characters used in written languages, sometimes restricted to Letter case, upper case letters, Numeral system, numerals and some punctuation only. The low cost of digital representation of data in modern computer systems allows more elaborate character codes (such as Unicode) which represent most of the characters used in many written languages. Character enc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ISO/IEC 2022
ISO/IEC 2022 ''Information technology—Character code structure and extension techniques'', is an ISO/IEC standard (equivalent to the ECMA standard ECMA-35, the ANSI standard ANSI X3.41 and the Japanese Industrial Standard JIS X 0202) in the field of character encoding. Originating in 1971, it was most recently revised in 1994. ISO 2022 specifies a general structure which character encodings can conform to, dedicating particular ranges of bytes ( 0x00–1F and 0x7F–9F) to be used for non-printing control codes for formatting and in-band instructions (such as line breaks or formatting instructions for text terminals), rather than graphical characters. It also specifies a syntax for escape sequences, multiple-byte sequences beginning with the control code, which can likewise be used for in-band instructions. Specific sets of control codes and escape sequences designed to be used with ISO 2022 include ISO/IEC 6429, portions of which are implemented by ANSI.SYS and terminal emu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Compression Scheme For Unicode
The Standard Compression Scheme for Unicode (SCSU) is a Unicode Technical Standard for reducing the number of bytes needed to represent Unicode text, especially if that text uses mostly characters from one or a small number of per-language character blocks. It does so by dynamically mapping values in the range 128–255 to offsets within particular blocks of 128 characters. The initial conditions of the encoder mean that existing strings in ASCII and ISO-8859-1 that do not contain C0 control codes other than NULL TAB CR and LF can be treated as SCSU strings. Since most alphabets do reside in blocks of contiguous Unicode codepoints, texts that use small alphabets and either ASCII punctuation or punctuation that fits within the window for the main alphabet can be encoded at one byte per character (plus setup overhead, which for common languages is often only 1 byte), most other punctuation can be encoded at 2 bytes per symbol through non-locking shifts. SCSU can also switch to UT ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




C0 And C1 Control Codes
The C0 and C1 control code or control character sets define control codes for use in text by computer systems that use ASCII and derivatives of ASCII. The codes represent additional information about the text, such as the position of a cursor, an instruction to start a new line, or a message that the text has been received. C0 codes are the range 00 HEX–1FHEX and the default C0 set was originally defined in ISO 646 (ASCII). C1 codes are the range 80HEX–9FHEX and the default C1 set was originally defined in ECMA-48 (harmonized later with ISO 6429). The ISO/IEC 2022 system of specifying control and graphic characters allows other C0 and C1 sets to be available for specialized applications, but they are rarely used. C0 controls ASCII defined 32 control characters, plus a necessary extra character for the DEL character, 7FHEX or 01111111BIN (needed to punch out all the holes on a paper tape and erase it). This large number of codes was desirable at the time, as multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bidirectional Algorithm
A bidirectional text contains two text directionalities, right-to-left (RTL) and left-to-right (LTR). It generally involves text containing different types of alphabets, but may also refer to boustrophedon, which is changing text direction in each row. Many computer programs fail to display bidirectional text correctly. For example, this page is mostly LTR English script, and here is the RTL Hebrew name Sarah: spelled sin on the right, resh , and heh on the left. Some so-called right-to-left script such as the Persian script (and Arabic) are mostly but not exclusively right-to-left; mathematical expressions, numeric dates and numbers bearing units are embedded from left to right. That also happens if e.g. English is embedded in them, or vice versa, if Arabic, Persian or Hebrew is embedded in a left-to-right script. Bidirectional script support Bidirectional script support is the capability of a computer system to correctly display bidirectional text. The term is often sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Text Normalization
Text normalization is the process of transforming text into a single canonical form that it might not have had before. Normalizing text before storing or processing it allows for separation of concerns, since input is guaranteed to be consistent before operations are performed on it. Text normalization requires being aware of what type of text is to be normalized and how it is to be processed afterwards; there is no all-purpose normalization procedure. Applications Text normalization is frequently used when converting text to speech. Numbers, dates, acronyms, and abbreviations are non-standard "words" that need to be pronounced differently depending on context.Sproat, R.; Black, A.; Chen, S.; Kumar, S.; Ostendorf, M.; Richards, C. (2001). "Normalization of non-standard words." ''Computer Speech and Language'' 15; 287–333. doibr>10.1006/csla.2001.0169 For example: * "$200" would be pronounced as "two hundred dollars" in English, but as "lua selau tālā" in Samoan. * "vi" c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


UTF-1
UTF-1 is a method of transforming ISO/IEC 10646/Unicode into a stream of bytes. Its design does not provide self-synchronization, which makes searching for substrings and error recovery difficult. It reuses the ASCII printing characters for multi-byte encodings, making it unsuited for some uses (for instance Unix filenames cannot contain the byte value used for forward slash). UTF-1 is also slow to encode or decode due to its use of division and multiplication by a number which is not a power of 2. Due to these issues, it did not gain acceptance and was quickly replaced by UTF-8. Design Similar to UTF-8, UTF-1 is a variable-width encoding that is backwards-compatible with ASCII. Every Unicode code point is represented by either a single byte, or a sequence of two, three, or ''five'' bytes. All ASCII code points are a single byte (the code points through are also single bytes). UTF-1 does not use the C0 and C1 control codes or the space character in multi-byte encodings: a by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]