U-rank
   HOME
*





U-rank
In model theory, a branch of mathematical logic, U-rank is one measure of the complexity of a (complete) type, in the context of stable theories. As usual, higher U-rank indicates less restriction, and the existence of a U-rank for all types over all sets is equivalent to an important model-theoretic condition: in this case, superstability. Definition U-rank is defined inductively, as follows, for any (complete) n-type p over any set A: * ''U''(''p'') ≥ 0 * If ''δ'' is a limit ordinal, then ''U''(''p'') ≥ ''δ'' precisely when ''U''(''p'') ≥ ''α'' for all ''α'' less than ''δ'' * For any ''α'' = ''β'' + 1, ''U''(''p'') ≥ ''α'' precisely when there is a forking extension ''q'' of ''p'' with ''U''(''q'') ≥ ''β'' We say that ''U''(''p'') = ''α'' when the ''U''(''p'') ≥ ''α'' but not ''U''(''p'') ≥ ''α'' + 1. If ''U''(''p'') ≥ ''α'' for all ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type (model Theory)
In model theory and related areas of mathematics, a type is an object that describes how a (real or possible) element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language ''L'' with free variables ''x''1, ''x''2,…, ''x''''n'' that are true of a sequence of elements of an ''L''-structure \mathcal. Depending on the context, types can be complete or partial and they may use a fixed set of constants, ''A'', from the structure \mathcal. The question of which types represent actual elements of \mathcal leads to the ideas of saturated models and omitting types. Formal definition Consider a structure \mathcal for a language ''L''. Let ''M'' be the universe of the structure. For every ''A'' ⊆ ''M'', let ''L''(''A'') be the language obtained from ''L'' by adding a constant ''c''''a'' for every ''a'' ∈ ''A''. In other words, :L(A) = L \cup \. A 1-type (of \mathcal) over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Theory
In the mathematical field of model theory, a complete theory is called stable if it does not have too many types. One goal of classification theory is to divide all complete theories into those whose models can be classified and those whose models are too complicated to classify, and to classify all models in the cases where this can be done. Roughly speaking, if a theory is not stable then its models are too complicated and numerous to classify, while if a theory is stable there might be some hope of classifying its models, especially if the theory is superstable or totally transcendental. Stability theory was started by , who introduced several of the fundamental concepts, such as totally transcendental theories and the Morley rank. Stable and superstable theories were first introduced by , who is responsible for much of the development of stability theory. The definitive reference for stability theory is , though it is notoriously hard even for experts to read, as mentioned, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stable Theory
In the mathematical field of model theory, a complete theory is called stable if it does not have too many types. One goal of classification theory is to divide all complete theories into those whose models can be classified and those whose models are too complicated to classify, and to classify all models in the cases where this can be done. Roughly speaking, if a theory is not stable then its models are too complicated and numerous to classify, while if a theory is stable there might be some hope of classifying its models, especially if the theory is superstable or totally transcendental. Stability theory was started by , who introduced several of the fundamental concepts, such as totally transcendental theories and the Morley rank. Stable and superstable theories were first introduced by , who is responsible for much of the development of stability theory. The definitive reference for stability theory is , though it is notoriously hard even for experts to read, as mentioned, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monotonic Function
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory. In calculus and analysis In calculus, a function f defined on a subset of the real numbers with real values is called ''monotonic'' if and only if it is either entirely non-increasing, or entirely non-decreasing. That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease. A function is called ''monotonically increasing'' (also ''increasing'' or ''non-decreasing'') if for all x and y such that x \leq y one has f\!\left(x\right) \leq f\!\left(y\right), so f preserves the order (see Figure 1). Likewise, a function is called ''monotonically decreasing'' (also ''decreasing'' or ''non-increasing'') if, whenever x \leq y, then f\!\left(x\right) \geq f\!\left(y\ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraically Closed Field
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation ''x''2 + 1 = 0  has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. Also, no finite field ''F'' is algebraically closed, because if ''a''1, ''a''2, ..., ''an'' are the elements of ''F'', then the polynomial (''x'' − ''a''1)(''x'' − ''a''2) ⋯ (''x'' − ''a''''n'') + 1 has no zero in ''F''. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraicall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]