Twisted Sheaf
   HOME
*





Twisted Sheaf
In mathematics, a twisted sheaf is a variant of a coherent sheaf. Precisely, it is specified by: an open covering in the étale topology ''U''''i'', coherent sheaves ''F''''i'' over ''U''''i'', a Čech 2-cocycle ''θ'' on the covering ''U''''i'' as well as the isomorphisms :g_: F_j, _ \overset\to F_i, _ satisfying *g_ = \operatorname_, *g_ = g_^, *g_ \circ g_ \circ g_ = \theta_ \operatorname_. The notion of twisted sheaves was introduced by Jean Giraud. The above definition due to Căldăraru is down-to-earth but is equivalent to a more sophisticated definition in terms of gerbe; see § 2.1.3 of . See also * Reflexive sheaf In algebraic geometry, a reflexive sheaf is a coherent sheaf that is isomorphic to its second dual (as a sheaf of modules) via the canonical map. The second dual of a coherent sheaf is called the reflexive hull of the sheaf. A basic example of a re ... * Torsion sheaf References * * Geometry {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherent Sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X-modules which has a local presentation, that is, every point in X has an open neighborhood U in which there is an ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Open Covering
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\subset X, then C is a cover of X if \bigcup_U_ = X. Thus the collection \lbrace U_\alpha : \alpha \in A \rbrace is a cover of X if each element of X belongs to at least one of the subsets U_. Cover in topology Covers are commonly used in the context of topology. If the set X is a topological space, then a ''cover'' C of X is a collection of subsets \_ of X whose union is the whole space X. In this case we say that C ''covers'' X, or that the sets U_\alpha ''cover'' X. Also, if Y is a (topological) subspace of X, then a ''cover'' of Y is a collection of subsets C=\_ of X whose union contains Y, i.e., C is a cover of Y if :Y \subseteq \bigcup_U_. That is, we may cover Y with either open sets in Y itself, or cover Y by open sets in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


étale Topology
In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use. Definitions For any scheme ''X'', let Ét(''X'') be the category of all étale morphisms from a scheme to ''X''. This is the analog of the category of open subsets of ''X'' (that is, the category whose objects are varieties and whose morphisms are open immersions). Its objects can be informally thought of as étale open subsets of ''X''. The intersection of two objects corresponds to their fiber product over ''X''. Ét(''X'') is a large category, meaning that its objects do not form a set. An étale presheaf on ''X'' is a contravariant functor from Ét(''X'') to the category of sets. A presheaf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ÄŒech Cohomology
In mathematics, specifically algebraic topology, ÄŒech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard ÄŒech. Motivation Let ''X'' be a topological space, and let \mathcal be an open cover of ''X''. Let N(\mathcal) denote the nerve of the covering. The idea of ÄŒech cohomology is that, for an open cover \mathcal consisting of sufficiently small open sets, the resulting simplicial complex N(\mathcal) should be a good combinatorial model for the space ''X''. For such a cover, the ÄŒech cohomology of ''X'' is defined to be the simplicial cohomology of the nerve. This idea can be formalized by the notion of a good cover. However, a more general approach is to take the direct limit of the cohomology groups of the nerve over the system of all possible open covers of ''X'', ordered by refinement. This is the approach adopted below. Construction Let ''X'' be a topological space, and l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jean Giraud (mathematician)
Jean Giraud (; 2 February 1936 – 27 or 28 March 2007)
, Philippe Gillet, ''ENS Info'' 70, April 2007.
was a French mathematician, a student of Alexander Grothendieck. His research focused on non-abelian cohomology and the theory of . In particular, he authored the book ''Cohomologie non-abélienne'' (Springer, 1971) and proved the theorem that bears his name, which gives a characterization of a Grothendieck topos. From 1969 to 1989, he was a professor at

Gerbe
In mathematics, a gerbe (; ) is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud (mathematician), Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of Deformation theory, deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them. "Gerbe" is a French (and archaic English) word that literally means wheat sheaf (agriculture), sheaf. Definitions Gerbes on a topological space A gerbe on a topological space S is a stack (mathematics), stack \mathcal of groupoids over S which is ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflexive Sheaf
In algebraic geometry, a reflexive sheaf is a coherent sheaf that is isomorphic to its second dual (as a sheaf of modules) via the canonical map. The second dual of a coherent sheaf is called the reflexive hull of the sheaf. A basic example of a reflexive sheaf is a locally free sheaf of finite rank and, in practice, a reflexive sheaf is thought of as a kind of a vector bundle modulo some singularity. The notion is important both in scheme theory and complex algebraic geometry. For the theory of reflexive sheaves, one works over an integral noetherian scheme. A reflexive sheaf is torsion-free. The dual of a coherent sheaf is reflexive. Usually, the product of reflexive sheaves is defined as the reflexive hull of their tensor products (so the result is reflexive.) A coherent sheaf ''F'' is said to be "normal" in the sense of Barth if the restriction F(U) \to F(U - Y) is bijective for every open subset ''U'' and a closed subset ''Y'' of ''U'' of codimension at least 2. With this te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Torsion Sheaf
In mathematics, a torsion sheaf is a sheaf of abelian groups \mathcal on a site for which, for every object ''U'', the space of sections \Gamma(U, \mathcal) is a torsion abelian group. Similarly, for a prime number ''p'', we say a sheaf \mathcal is ''p''-torsion if every section over any object is killed by a power of ''p''. A torsion sheaf on an étale site is the union of its constructible subsheaves. See also * Twisted sheaf In mathematics, a twisted sheaf is a variant of a coherent sheaf. Precisely, it is specified by: an open covering in the étale topology ''U'i'', coherent sheaves ''F'i'' over ''U'i'', a ÄŒech 2-cocycle ''θ'' on the covering ''U'i'' ... Notes References * * J. S. Milne, ''Étale Cohomology'' * Sheaf theory {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]