Turing.jl
   HOME
*





Turing.jl
Probabilistic programming (PP) is a programming paradigm in which probabilistic models are specified and inference for these models is performed automatically. It represents an attempt to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.Pfeffer, Avrom (2014), ''Practical Probabilistic Programming'', Manning Publications. p.28. It can be used to create systems that help make decisions in the face of uncertainty. Programming languages used for probabilistic programming are referred to as "probabilistic programming languages" (PPLs). Applications Probabilistic reasoning has been used for a wide variety of tasks such as predicting stock prices, recommending movies, diagnosing computers, detecting cyber intrusions and image detection. However, until recently (partially due to limited computing power), probabilistic programming was limited in scope, and most inference algorithms had to be writt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Turing (probabilistic Programming)
Probabilistic programming (PP) is a programming paradigm in which probabilistic models are specified and inference for these models is performed automatically. It represents an attempt to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.Pfeffer, Avrom (2014), ''Practical Probabilistic Programming'', Manning Publications. p.28. It can be used to create systems that help make decisions in the face of uncertainty. Programming languages used for probabilistic programming are referred to as "probabilistic programming languages" (PPLs). Applications Probabilistic reasoning has been used for a wide variety of tasks such as predicting stock prices, recommending movies, diagnosing computers, detecting cyber intrusions and image detection. However, until recently (partially due to limited computing power), probabilistic programming was limited in scope, and most inference algorithms had to be writt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Programming Paradigm
Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms. Some paradigms are concerned mainly with implications for the execution model of the language, such as allowing side effects, or whether the sequence of operations is defined by the execution model. Other paradigms are concerned mainly with the way that code is organized, such as grouping a code into units along with the state that is modified by the code. Yet others are concerned mainly with the style of syntax and grammar. Common programming paradigms include: * imperative in which the programmer instructs the machine how to change its state, ** procedural which groups instructions into procedures, ** object-oriented which groups instructions with the part of the state they operate on, * declarative in which the programmer merely declares properties of the desired result, but not how to compute it ** functional in which the de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytica (software)
Analytica is a visual software developed by Lumina Decision Systems for creating, analyzing and communicating quantitative decision models. It combines hierarchical influence diagrams for visual creation and view of models, intelligent arrays for working with multidimensional data, Monte Carlo simulation for analyzing risk and uncertainty, and optimization, including linear and nonlinear programming. Its design, especially its influence diagrams and treatment of uncertainty, is based on ideas from the field of decision analysis. As a computer language, it combines a declarative (non-procedural) structure for referential transparency, array abstraction, and automatic dependency maintenance for efficient sequencing of computation. Hierarchical influence diagrams Analytica models are organized as influence diagrams. Variables (and other objects) appear as nodes of various shapes on a diagram, connected by arrows that provide a visual representation of dependencies. Analytica i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Scala (programming Language)
Scala ( ) is a strong statically typed general-purpose programming language that supports both object-oriented programming and functional programming. Designed to be concise, many of Scala's design decisions are aimed to address criticisms of Java. Scala source code can be compiled to Java bytecode and run on a Java virtual machine (JVM). Scala can also be compiled to JavaScript to run in a browser, or directly to a native executable. On the JVM Scala provides language interoperability with Java so that libraries written in either language may be referenced directly in Scala or Java code. Like Java, Scala is object-oriented, and uses a syntax termed '' curly-brace'' which is similar to the language C. Since Scala 3, there is also an option to use the off-side rule (indenting) to structure blocks, and its use is advised. Martin Odersky has said that this turned out to be the most productive change introduced in Scala 3. Unlike Java, Scala has many features of functional prog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probabilistic SQL
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', (Vol 1), 3rd Ed, (1968), Wiley, . The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These conce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Satisfiability Problem
In logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called ''satisfiable''. On the other hand, if no such assignment exists, the function expressed by the formula is FALSE for all possible variable assignments and the formula is ''unsatisfiable''. For example, the formula "''a'' AND NOT ''b''" is satisfiable because one can find the values ''a'' = TRUE and ''b'' = FALSE, which make (''a'' AND NOT ''b'') = TRUE. In contrast, "''a'' AND NOT ''a''" is unsatisfiable. SAT is the first problem that was proved to be NP-complete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Answer Set Programming
Answer set programming (ASP) is a form of declarative programming oriented towards difficult (primarily NP-hard) search problems. It is based on the stable model (answer set) semantics of logic programming. In ASP, search problems are reduced to computing stable models, and ''answer set solvers''—programs for generating stable models—are used to perform search. The computational process employed in the design of many answer set solvers is an enhancement of the DPLL algorithm and, in principle, it always terminates (unlike Prolog query evaluation, which may lead to an infinite loop). In a more general sense, ASP includes all applications of answer sets to knowledge representation and the use of Prolog-style query evaluation for solving problems arising in these applications. History An early example of answer set programming was the planning method proposed in 1997 by Dimopoulos, Nebel and Köhler. Their approach is based on the relationship between plans and stable model ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE