Toric Stack
   HOME
*





Toric Stack
In algebraic geometry, a toric stack is a stacky generalization of a toric variety. More precisely, a toric stack is obtained by replacing in the construction of a toric variety a step of taking GIT quotients with that of taking quotient stacks. Consequently, a toric variety is a coarse approximation of a toric stack. A toric orbifold is an example of a toric stack. See also *Stanley–Reisner ring In mathematics, a Stanley–Reisner ring, or face ring, is a quotient of a polynomial algebra over a field by a square-free monomial ideal. Such ideals are described more geometrically in terms of finite simplicial complexes. The Stanley–Reisner ... References * * * Algebraic geometry {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stack (mathematics)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis. In a more general set-up the restrictions are replaced with pullbacks; fibred categories then make a good framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that the general language for describing these coverings is that of a Grothendieck topology. Thus a stack ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Toric Variety
In algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be normal. Toric varieties form an important and rich class of examples in algebraic geometry, which often provide a testing ground for theorems. The geometry of a toric variety is fully determined by the combinatorics of its associated fan, which often makes computations far more tractable. For a certain special, but still quite general class of toric varieties, this information is also encoded in a polytope, which creates a powerful connection of the subject with convex geometry. Familiar examples of toric varieties are affine space, projective spaces, products of projective spaces and bundles over projective space. Toric varieties from tori The original motivation to study toric varieties was to study torus embeddings. Given the algebraic t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GIT Quotient
In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme X = \operatorname A with an action by a group scheme ''G'' is the affine scheme \operatorname(A^G), the prime spectrum of the ring of invariants of ''A'', and is denoted by X /\!/ G. A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it. Taking Proj (of a graded ring) instead of \operatorname, one obtains a projective GIT quotient (which is a quotient of the set of semistable points.) A GIT quotient is a categorical quotient of the locus of semistable points; i.e., "the" quotient of the semistable locus. Since the categorical quotient is unique, if there is a geometric quotient, then the two notions coincide: for example, one has :G / H = G /\!/ H = \operatorname\!\big(k H\big) for an algebraic group ''G'' over a field ''k'' and closed subgroup ''H''. If ''X'' is a complex smooth projective variety and if ''G'' is a reductive co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quotient Stack
In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. The notion is of fundamental importance in the study of stacks: a stack that arises in nature is often either a quotient stack itself or admits a stratification by quotient stacks (e.g., a Deligne–Mumford stack.) A quotient stack is also used to construct other stacks like classifying stacks. Definition A quotient stack is defined as follows. Let ''G'' be an affine smooth group scheme over a scheme ''S'' and ''X'' an ''S''-scheme on which ''G'' acts. Let the quotient stack /G/math> be the category over the category of ''S''-schemes: *an object over ''T'' is a principal ''G''-bundle P\to T together with equivariant map P\to X; *an arrow from P\to T to P'\to T' is a bundle map (i.e., forms a commutative diagram) that is compatible with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanley–Reisner Ring
In mathematics, a Stanley–Reisner ring, or face ring, is a quotient of a polynomial algebra over a field by a square-free monomial ideal. Such ideals are described more geometrically in terms of finite simplicial complexes. The Stanley–Reisner ring construction is a basic tool within algebraic combinatorics and combinatorial commutative algebra.Miller & Sturmfels (2005) p.19 Its properties were investigated by Richard Stanley, Melvin Hochster, and Gerald Reisner in the early 1970s. Definition and properties Given an abstract simplicial complex Δ on the vertex set and a field k, the corresponding Stanley–Reisner ring, or face ring, denoted k ” is obtained from the polynomial ring k 'x''1,...,''x''''n''by quotienting out the ideal ''I''Δ generated by the square-free monomials corresponding to the non-faces of Î”: : I_\Delta=(x_\ldots x_: \\notin\Delta), \quad kDeltak _1,\ldots,x_nI_\Delta. The ideal ''I''Δ is called the Stanley–Reisner ideal or the face ideal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]