Top-down Parsing Language
   HOME





Top-down Parsing Language
Top-Down Parsing Language (TDPL) is a type of analytic formal grammar developed by Alexander Birman in the early 1970s in order to study formally the behavior of a common class of practical top-down parsers that support a limited form of backtracking. Birman originally named his formalism ''the TMG Schema'' (TS), after TMG, an early parser generator, but it was later given the name TDPL by Aho and Ullman in their classic anthology ''The Theory of Parsing, Translation and Compiling''. Definition of a TDPL grammar Formally, a TDPL grammar ''G'' is a quadruple consisting of the following components: * A finite set ''N'' of ''nonterminal symbols''. * A finite set Σ of ''terminal symbols'' that is disjoint from ''N''. * A finite set ''P'' of '' production rules'', where a rule has one of the following forms: ** ''A'' → ε, where ''A'' is a nonterminal and ε is the empty string. ** ''A'' → ''f'', where ''f'' is a distinguished symbol representing ''unconditional failure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analytic Grammar
A formal grammar is a set of symbols and the production rules for rewriting some of them into every possible string of a formal language over an alphabet. A grammar does not describe the meaning of the strings — only their form. In applied mathematics, formal language theory is the discipline that studies formal grammars and languages. Its applications are found in theoretical computer science, theoretical linguistics, formal semantics, mathematical logic, and other areas. A formal grammar is a set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that determines whether a given string belongs to the language or is grammatically incorrect. To describe such recognizers, formal language theory uses separate formalisms, known as automata theory. One of the interesting resul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function (programming)
In computer programming, a function (also procedure, method, subroutine, routine, or subprogram) is a callable unit of software logic that has a well-defined interface and behavior and can be invoked multiple times. Callable units provide a powerful programming tool. The primary purpose is to allow for the decomposition of a large and/or complicated problem into chunks that have relatively low cognitive load and to assign the chunks meaningful names (unless they are anonymous). Judicious application can reduce the cost of developing and maintaining software, while increasing its quality and reliability. Callable units are present at multiple levels of abstraction in the programming environment. For example, a programmer may write a function in source code that is compiled to machine code that implements similar semantics. There is a callable unit in the source code and an associated one in the machine code, but they are different kinds of callable units with different implica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recursive Descent Parser
In computer science, a recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures (or a non-recursive equivalent) where each such procedure implements one of the nonterminals of the grammar. Thus the structure of the resulting program closely mirrors that of the grammar it recognizes. A ''predictive parser'' is a recursive descent parser that does not require backtracking. Predictive parsing is possible only for the class of LL(''k'') grammars, which are the context-free grammars for which there exists some positive integer ''k'' that allows a recursive descent parser to decide which production to use by examining only the next ''k'' tokens of input. The LL(''k'') grammars therefore exclude all ambiguous grammars, as well as all grammars that contain left recursion. Any context-free grammar can be transformed into an equivalent grammar that has no left recursion, but removal of left recursion does not always yield an LL(''k'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Grammar
A formal grammar is a set of Terminal and nonterminal symbols, symbols and the Production (computer science), production rules for rewriting some of them into every possible string of a formal language over an Alphabet (formal languages), alphabet. A grammar does not describe the semantics, meaning of the strings — only their form. In applied mathematics, formal language theory is the discipline that studies formal grammars and languages. Its applications are found in theoretical computer science, theoretical linguistics, Formal semantics (logic), formal semantics, mathematical logic, and other areas. A formal grammar is a Set_(mathematics), set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that determines whether a given string belongs to the language or is grammatical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Parsing Expression Grammar
In computer science, a parsing expression grammar (PEG) is a type of analytic formal grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the language. The formalism was introduced by Bryan Ford in 2004 and is closely related to the family of top-down parsing languages introduced in the early 1970s. Syntactically, PEGs also look similar to context-free grammars (CFGs), but they have a different interpretation: the choice operator selects the first match in PEG, while it is ambiguous in CFG. This is closer to how string recognition tends to be done in practice, e.g. by a recursive descent parser. Unlike CFGs, PEGs cannot be ambiguous; a string has exactly one valid parse tree or none. It is conjectured that there exist context-free languages that cannot be recognized by a PEG, but this is not yet proven. PEGs are well-suited to parsing computer languages (and artificial human languages such as Lojban) where multiple interpretation a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dyck Language
In the theory of formal languages of computer science, mathematics, and linguistics, a Dyck word is a balanced string of brackets. The set of Dyck words forms a Dyck language. The simplest, Dyck-1, uses just two matching brackets, e.g. ( and ). Dyck words and language are named after the mathematician Walther von Dyck. They have applications in the parsing of expressions that must have a correctly nested sequence of brackets, such as arithmetic or algebraic expressions. Formal definition Let \Sigma = \ be the alphabet consisting of the symbols and Let \Sigma^ denote its Kleene closure. The Dyck language is defined as: : \. Context-free grammar It may be helpful to define the Dyck language via a context-free grammar in some situations. The Dyck language is generated by the context-free grammar with a single non-terminal , and the production: : That is, ''S'' is either the empty string () or is " , an element of the Dyck language, the matching ", and an element of the D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Context-free Language
In formal language theory, a context-free language (CFL), also called a Chomsky type-2 language, is a language generated by a context-free grammar (CFG). Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by context-free grammars. Background Context-free grammar Different context-free grammars can generate the same context-free language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language. Automata The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing. Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct. Examples An e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Language
In theoretical computer science and formal language theory, a regular language (also called a rational language) is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expression engines, which are Regular expression#Patterns for non-regular languages, augmented with features that allow the recognition of non-regular languages). Alternatively, a regular language can be defined as a language recognised by a finite automaton. The equivalence of regular expressions and finite automata is known as Kleene's theorem (after American mathematician Stephen Cole Kleene). In the Chomsky hierarchy, regular languages are the languages generated by regular grammar, Type-3 grammars. Formal definition The collection of regular languages over an Alphabet (formal languages), alphabet Σ is defined recursively as follows: * The empty language ∅ is a regular language. * For each ''a'' ∈ Σ (''a'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Recursion
Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function (mathematics), function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references can occur. A process that exhibits recursion is ''recursive''. Video feedback displays recursive images, as does an infinity mirror. Formal definitions In mathematics and computer science, a class of objects or methods exhibits recursive behavior when it can be defined by two properties: * A simple ''base case'' (or cases) — a terminating scenario that does not use recursion to produce an answer * A ''recursive step'' — a set of rules that reduce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recursive Descent Parser
In computer science, a recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures (or a non-recursive equivalent) where each such procedure implements one of the nonterminals of the grammar. Thus the structure of the resulting program closely mirrors that of the grammar it recognizes. A ''predictive parser'' is a recursive descent parser that does not require backtracking. Predictive parsing is possible only for the class of LL(''k'') grammars, which are the context-free grammars for which there exists some positive integer ''k'' that allows a recursive descent parser to decide which production to use by examining only the next ''k'' tokens of input. The LL(''k'') grammars therefore exclude all ambiguous grammars, as well as all grammars that contain left recursion. Any context-free grammar can be transformed into an equivalent grammar that has no left recursion, but removal of left recursion does not always yield an LL(''k'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Formal Grammar
A formal grammar is a set of Terminal and nonterminal symbols, symbols and the Production (computer science), production rules for rewriting some of them into every possible string of a formal language over an Alphabet (formal languages), alphabet. A grammar does not describe the semantics, meaning of the strings — only their form. In applied mathematics, formal language theory is the discipline that studies formal grammars and languages. Its applications are found in theoretical computer science, theoretical linguistics, Formal semantics (logic), formal semantics, mathematical logic, and other areas. A formal grammar is a Set_(mathematics), set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that determines whether a given string belongs to the language or is grammatical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Production Rule (formal Languages)
In computer science, a production or production rule is a rewrite rule that replaces some symbols with other symbols. A finite set of productions P is the main component in the specification of a formal grammar (specifically a generative grammar). The other components are a finite set N of nonterminal symbols, a finite set (known as an alphabet) \Sigma of terminal symbols that is disjoint from N and a distinguished symbol S \in N that is the ''start symbol''. In an unrestricted grammar, a production is of the form u \to v, where u and v are arbitrary strings of terminals and nonterminals, and u may not be the empty string. If v is the empty string, this is denoted by the symbol \epsilon, or \lambda (rather than leaving the right-hand side blank). So productions are members of the cartesian product :V^*NV^* \times V^* = (V^*\setminus\Sigma^*) \times V^*, where V := N \cup \Sigma is the ''vocabulary'', ^ is the Kleene star operator, V^*NV^* indicates concatenation, \cup denotes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]