Time-varying Network
   HOME
*





Time-varying Network
A temporal network, also known as a time-varying network, is a network whose links are active only at certain points in time. Each link carries information on when it is active, along with other possible characteristics such as a weight. Time-varying networks are of particular relevance to spreading processes, like the spread of information and disease, since each link is a contact opportunity and the time ordering of contacts is included. Examples of time-varying networks include communication networks where each link is relatively short or instantaneous, such as phone calls or e-mails.J.-P. Eckmann, E. Moses, and D. Sergi. Entropy of dialogues creates coherent structures in e-mail traffic" ''Proc. Natl. Acad. Sci. USA'' 2004; 101:14333–14337. https://www.weizmann.ac.il/complex/EMoses/pdf/EntropyDialogues.pdf Information spreads over both networks, and some computer viruses spread over the second. Networks of physical proximity, encoding who encounters whom and when, can be re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Network
In the context of network theory, a complex network is a graph (network) with non-trivial topological features—features that do not occur in simple networks such as lattices or random graphs but often occur in networks representing real systems. The study of complex networks is a young and active area of scientific research (since 2000) inspired largely by empirical findings of real-world networks such as computer networks, biological networks, technological networks, brain networks, climate networks and social networks. Definition Most social, biological, and technological networks display substantial non-trivial topological features, with patterns of connection between their elements that are neither purely regular nor purely random. Such features include a heavy tail in the degree distribution, a high clustering coefficient, assortativity or disassortativity among vertices, community structure, and hierarchical structure. In the case of directed networks these feat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intransitivity
In mathematics, intransitivity (sometimes called nontransitivity) is a property of binary relations that are not transitive relations. This may include any relation that is not transitive, or the Mathematical jargon#stronger, stronger property of antitransitivity, which describes a relation that is never transitive. Intransitivity A relation is transitive if, whenever it relates some A to some B, and that B to some C, it also relates that A to that C. Some authors call a relation if it is not transitive, that is, (if the relation in question is named R) \lnot\left(\forall a, b, c: a R b \land b R c \implies a R c\right). This statement is equivalent to \exists a,b,c : a R b \land b R c \land \lnot(a R c). For instance, in the food chain, wolves feed on deer, and deer feed on grass, but wolves do not feed on grass. Thus, the relation among life forms is intransitive, in this sense. Another example that does not involve preference loops arises in freemasonry: in some instance ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scale-free Network
A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction ''P''(''k'') of nodes in the network having ''k'' connections to other nodes goes for large values of ''k'' as : P(k) \ \sim \ k^\boldsymbol where \gamma is a parameter whose value is typically in the range 2<\gamma<3 (wherein the second moment () of k^\boldsymbol is infinite but the first moment is finite), although occasionally it may lie outside these bounds. Many networks have been reported to be scale-free, although statistical analysis has refuted many of these claims and seriously questioned others. Additionally, some have argued that simply knowing that a degree-distribution is
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Link-centric Preferential Attachment
In mathematical modeling of social networks, link-centric preferential attachment is a node's propensity to re-establish links to nodes it has previously been in contact with in time-varying networks. This preferential attachment model relies on nodes keeping memory of previous neighbors up to the current time. Background In real social networks individuals exhibit a tendency to re-connect with past contacts (ex. family, friends, co-workers, etc.) rather than strangers. In 1970, Mark Granovetter examined this behaviour in the social networks of a group of workers and identified tie strength, a characteristic of social ties describing the frequency of contact between two individuals. From this comes the idea of strong and weak ties, where an individual's strong ties are those she has come into frequent contact with. Link-centric preferential attachment aims to explain the mechanism behind strong and weak ties as a stochastic reinforcement process for old ties in agent-based modelin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exponential Random Graph Models
Exponential family random graph models (ERGMs) are a family of statistical models for analyzing data from social network, social and network science, other networks. Examples of networks examined using ERGM include knowledge networks, organizational networks, colleague networks, social media networks, networks of scientific development, and others. Background Many metrics exist to describe the structural features of an observed network such as the density, centrality, or assortativity. However, these metrics describe the observed network which is only one instance of a large number of possible alternative networks. This set of alternative networks may have similar or dissimilar structural features. To support statistical inference on the processes influencing the formation of network structure, a statistical model should consider the set of all possible alternative networks weighted on their similarity to an observed network. However because network data is inherently relational, it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dynamic Network Analysis
Dynamic network analysis (DNA) is an emergent scientific field that brings together traditional social network analysis (SNA), link analysis (LA), social simulation and multi-agent systems (MAS) within network science and network theory. Dynamic networks are a function of time (modeled as a subset of the real numbers) to a set of graphs; for each time point there is a graph. This is akin to the definition of dynamical systems, in which the function is from time to an ambient space, where instead of ambient space time is translated to relationships between pairs of vertices. Overview There are two aspects of this field. The first is the statistical analysis of DNA data. The second is the utilization of simulation to address issues of network dynamics. DNA networks vary from traditional social networks in that they are larger, dynamic, multi-mode, multi-plex networks, and may contain varying levels of uncertainty. The main difference of DNA to SNA is that DNA takes interactions of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Directed Percolation
In statistical physics, directed percolation (DP) refers to a class of models that mimic filtering of fluids through porous materials along a given direction, due to the effect of gravity. Varying the microscopic connectivity of the pores, these models display a phase transition from a macroscopically permeable (percolating) to an impermeable (non-percolating) state. Directed percolation is also used as a simple model for epidemic spreading with a transition between survival and extinction of the disease depending on the infection rate. More generally, the term directed percolation stands for a universality class of continuous phase transitions which are characterized by the same type of collective behavior on large scales. Directed percolation is probably the simplest universality class of transitions out of thermal equilibrium. Lattice models One of the simplest realizations of DP is bond directed percolation. This model is a directed variant of ordinary (isotropic) percol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epidemic Model
Compartmental models are a very general modelling technique. They are often applied to the mathematical modelling of infectious diseases. The population is assigned to compartments with labels – for example, S, I, or R, (Susceptible, Infectious, or Recovered). People may progress between compartments. The order of the labels usually shows the flow patterns between the compartments; for example SEIS means susceptible, exposed, infectious, then susceptible again. The origin of such models is the early 20th century, with important works being that of Ross in 1916, Ross and Hudson in 1917, Kermack and McKendrick in 1927 and Kendall in 1956. The Reed-Frost model was also a significant and widely-overlooked ancestor of modern epidemiological modelling approaches. The models are most often run with ordinary differential equations (which are deterministic), but can also be used with a stochastic (random) framework, which is more realistic but much more complicated to analyze. Models ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Network
In the context of network theory, a complex network is a graph (network) with non-trivial topological features—features that do not occur in simple networks such as lattices or random graphs but often occur in networks representing real systems. The study of complex networks is a young and active area of scientific research (since 2000) inspired largely by empirical findings of real-world networks such as computer networks, biological networks, technological networks, brain networks, climate networks and social networks. Definition Most social, biological, and technological networks display substantial non-trivial topological features, with patterns of connection between their elements that are neither purely regular nor purely random. Such features include a heavy tail in the degree distribution, a high clustering coefficient, assortativity or disassortativity among vertices, community structure, and hierarchical structure. In the case of directed networks these feat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mean
There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set. For a data set, the ''arithmetic mean'', also known as "arithmetic average", is a measure of central tendency of a finite set of numbers: specifically, the sum of the values divided by the number of values. The arithmetic mean of a set of numbers ''x''1, ''x''2, ..., x''n'' is typically denoted using an overhead bar, \bar. If the data set were based on a series of observations obtained by sampling from a statistical population, the arithmetic mean is the ''sample mean'' (\bar) to distinguish it from the mean, or expected value, of the underlying distribution, the ''population mean'' (denoted \mu or \mu_x).Underhill, L.G.; Bradfield d. (1998) ''Introstat'', Juta and Company Ltd.p. 181/ref> Outside probability and statistics, a wide range of other notions of mean are o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Deviation
In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range. Standard deviation may be abbreviated SD, and is most commonly represented in mathematical texts and equations by the lower case Greek letter σ (sigma), for the population standard deviation, or the Latin letter '' s'', for the sample standard deviation. The standard deviation of a random variable, sample, statistical population, data set, or probability distribution is the square root of its variance. It is algebraically simpler, though in practice less robust, than the average absolute deviation. A useful property of the standard deviation is that, unlike the variance, it is expressed in the same unit as the data. The standard deviation of a popu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisson Process
In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field. This point process has convenient mathematical properties, which has led to its being frequently defined in Euclidean space and used as a mathematical model for seemingly random processes in numerous disciplines such as astronomy,G. J. Babu and E. D. Feigelson. Spatial point processes in astronomy. ''Journal of statistical planning and inference'', 50(3):311–326, 1996. biology,H. G. Othmer, S. R. Dunbar, and W. Alt. Models of dispersal in biological systems. ''Journal of mathematical biology'', 26(3):263–298, 1988. ecology,H. Thompson. Spatial point processes, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]