Theory Of Pure Equality
   HOME
*





Theory Of Pure Equality
In mathematical logic the theory of pure equality is a first-order theory. It has a signature consisting of only the equality relation symbol, and includes no non-logical axioms at all. This theory is consistent but incomplete, as a non-empty set with the usual equality relation provides an interpretation making certain sentences true. It is an example of a decidable theory and is a fragment of more expressive decidable theories, including monadic class of first-order logic (which also admits unary predicates and is, via Skolem normal form, related to set constraints in program analysis) and monadic second-order theory of a pure set (which additionally permits quantification over predicates and whose signature extends to monadic second-order logic of ''k'' successors). Historical significance The theory of pure equality was proven to be decidable by Leopold Löwenheim in 1915. If an additional axiom is added saying that there are exactly ''m'' objects for a fixed natural n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leopold Löwenheim
Leopold Löwenheim ˆle:o:pÉ”lÌ©d ˈlø:vÉ›nhaɪm(26 June 1878 in Krefeld – 5 May 1957 in Berlin) was a German mathematician doing work in mathematical logic. The Nazi regime forced him to retire because under the Nuremberg Laws he was considered only three quarters Aryan. In 1943 much of his work was destroyed during a bombing raid on Berlin. Nevertheless, he survived the Second World War, after which he resumed teaching mathematics. Löwenheim (1915) gave the first proof of what is now known as the Löwenheim–Skolem theorem, often considered the starting point for model theory. Leopold was the son of Ludwig Löwenheim, a mathematics teacher at the polytechnic in Krefeld and Elizabeth Röhn, a writer. In 1881 the three of them left Krefeld first for Naples and then Berlin where Ludwig was a private scholar working on a comprehensive account of the influence of Democritus on modern science. Although he hoped this would gain him a teaching job at Humboldt University Ludwig di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equational Logic
First-order equational logic consists of quantifier-free terms of ordinary first-order logic, with equality as the only predicate symbol. The model theory of this logic was developed into universal algebra by Birkhoff, Grätzer, and Cohn. It was later made into a branch of category theory by Lawvere ("algebraic theories").equational logic. (n.d.). The Free On-line Dictionary of Computing. Retrieved October 24, 2011, from Dictionary.com website: http://dictionary.reference.com/browse/equational+logic The terms of equational logic are built up from variables and constants using function symbols (or operations). Syllogism Here are the four inference rules of logic. P := E/math> denotes textual substitution of expression E for variable x in expression P. Next, b = c denotes equality, for b and c of the same type, while b \equiv c, or equivalence, is defined only for b and c of type boolean. For b and c of type boolean, b = c and b \equiv c have the same meaning. Gries, D. (2010 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of First-order Theories
In first-order logic, a first-order theory is given by a set of axioms in some language. This entry lists some of the more common examples used in model theory and some of their properties. Preliminaries For every natural mathematical structure there is a signature σ listing the constants, functions, and relations of the theory together with their arities, so that the object is naturally a σ-structure. Given a signature σ there is a unique first-order language ''L''σ that can be used to capture the first-order expressible facts about the σ-structure. There are two common ways to specify theories: #List or describe a set of sentences in the language ''L''σ, called the axioms of the theory. #Give a set of σ-structures, and define a theory to be the set of sentences in ''L''σ holding in all these models. For example, the "theory of finite fields" consists of all sentences in the language of fields that are true in all finite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ehrenfeucht–Fraïssé Game
In the mathematical discipline of model theory, the Ehrenfeucht–Fraïssé game (also called back-and-forth games) is a technique based on game semantics for determining whether two structures are elementarily equivalent. The main application of Ehrenfeucht–Fraïssé games is in proving the inexpressibility of certain properties in first-order logic. Indeed, Ehrenfeucht–Fraïssé games provide a complete methodology for proving inexpressibility results for first-order logic. In this role, these games are of particular importance in finite model theory and its applications in computer science (specifically computer aided verification and database theory), since Ehrenfeucht–Fraïssé games are one of the few techniques from model theory that remain valid in the context of finite models. Other widely used techniques for proving inexpressibility results, such as the compactness theorem, do not work in finite models. Ehrenfeucht–Fraïssé-like games can also be defined for othe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantifier Elimination
Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement "\exists x such that \ldots" can be viewed as a question "When is there an x such that \ldots?", and the statement without quantifiers can be viewed as the answer to that question. One way of classifying formulas is by the amount of quantification. Formulas with less depth of quantifier alternation are thought of as being simpler, with the quantifier-free formulas as the simplest. A theory has quantifier elimination if for every formula \alpha, there exists another formula \alpha_ without quantifiers that is equivalent to it ( modulo this theory). Examples An example from high school mathematics says that a single-variable quadratic polynomial has a real root if and only if its discriminant is non-negative: :: \exists x\in\mathbb. (a\neq 0 \wedge ax^2+bx+c=0)\ \ \Longleftrightarrow\ \ a\neq 0 \wedge b^2-4ac\geq 0 He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equational Logic
First-order equational logic consists of quantifier-free terms of ordinary first-order logic, with equality as the only predicate symbol. The model theory of this logic was developed into universal algebra by Birkhoff, Grätzer, and Cohn. It was later made into a branch of category theory by Lawvere ("algebraic theories").equational logic. (n.d.). The Free On-line Dictionary of Computing. Retrieved October 24, 2011, from Dictionary.com website: http://dictionary.reference.com/browse/equational+logic The terms of equational logic are built up from variables and constants using function symbols (or operations). Syllogism Here are the four inference rules of logic. P := E/math> denotes textual substitution of expression E for variable x in expression P. Next, b = c denotes equality, for b and c of the same type, while b \equiv c, or equivalence, is defined only for b and c of type boolean. For b and c of type boolean, b = c and b \equiv c have the same meaning. Gries, D. (2010 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complete Theory
In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence \varphi, the theory T contains the sentence or its negation but not both (that is, either T \vdash \varphi or T \vdash \neg \varphi). Recursively axiomatizable first-order theories that are consistent and rich enough to allow general mathematical reasoning to be formulated cannot be complete, as demonstrated by Gödel's first incompleteness theorem. This sense of ''complete'' is distinct from the notion of a complete ''logic'', which asserts that for every theory that can be formulated in the logic, all semantically valid statements are provable theorems (for an appropriate sense of "semantically valid"). Gödel's completeness theorem is about this latter kind of completeness. Complete theories are closed under a number of conditions internally modelling the T-schema: * For a set of for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monadic Second-order Logic
In mathematical logic, monadic second-order logic (MSO) is the fragment of second-order logic where the second-order quantification is limited to quantification over sets. It is particularly important in the logic of graphs, because of Courcelle's theorem, which provides algorithms for evaluating monadic second-order formulas over graphs of bounded treewidth. It is also of fundamental importance in automata theory, where the Büchi-Elgot-Trakhtenbrot theorem gives a logical characterization of the regular languages. Second-order logic allows quantification over predicates. However, MSO is the fragment in which second-order quantification is limited to monadic predicates (predicates having a single argument). This is often described as quantification over "sets" because monadic predicates are equivalent in expressive power to sets (the set of elements for which the predicate is true). Variants Monadic second-order logic comes in two variants. In the variant considered over str ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]