Telephone Number (mathematics)
   HOME
*



picture info

Telephone Number (mathematics)
In mathematics, the telephone numbers or the involution numbers form a sequence of integers that count the ways people can be connected by person-to-person telephone calls. These numbers also describe the number of matchings (the Hosoya index) of a complete graph on vertices, the number of permutations on elements that are involutions, the sum of absolute values of coefficients of the Hermite polynomials, the number of standard Young tableaux with cells, and the sum of the degrees of the irreducible representations of the symmetric group. Involution numbers were first studied in 1800 by Heinrich August Rothe, who gave a recurrence equation by which they may be calculated, giving the values (starting from ) Applications John Riordan provides the following explanation for these numbers: suppose that people subscribe to a telephone service that can connect any two of them by a call, but cannot make a single call connecting more than two people. How many different patterns ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




K4 Matchings
K4 or K-4 may refer to: Military * Daewoo K4, a South Korean automatic grenade launcher * HMS ''K4'', a 1915 British K class submarine * K 4 or Norrland Dragoon Regiment, a Swedish Army cavalry regiment * K-4 (SLBM), an Indian submarine-launched ballistic missile * USS ''K-4'' (SS-35), a 1914 United States Navy K-class submarine Transport * China Railway K3/4 * K-4 (Kansas highway), a highway in Kansas * Kalitta Air, IATA code K4, an American cargo airline * LNER Class K4, a British class of 2-6-0 steam locomotives * London Buses route K4, a Transport for London contracted bus route * PRR K4s or Pennsylvania Railroad Type K4, a class of American 4-6-2 steam locomotives Other uses * K4, a Security company * K4, a four-man sprint kayak * K4, a model of the British red telephone box * K4, a normal modal logic * K, in graph theory, the complete graph of four vertices * K, in abstract algebra, the Klein four-group * K4 (mountain) or Gasherbrum II, a mountain between China an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pólya Enumeration Theorem
The Pólya enumeration theorem, also known as the Redfield–Pólya theorem and Pólya counting, is a theorem in combinatorics that both follows from and ultimately generalizes Burnside's lemma on the number of orbits of a group action on a set. The theorem was first published by J. Howard Redfield in 1927. In 1937 it was independently rediscovered by George Pólya, who then greatly popularized the result by applying it to many counting problems, in particular to the enumeration of chemical compounds. The Pólya enumeration theorem has been incorporated into symbolic combinatorics and the theory of combinatorial species. Simplified, unweighted version Let ''X'' be a finite set and let ''G'' be a group of permutations of ''X'' (or a finite symmetry group that acts on ''X''). The set ''X'' may represent a finite set of beads, and ''G'' may be a chosen group of permutations of the beads. For example, if ''X'' is a necklace of ''n'' beads in a circle, then rotational symmetry is rel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eight Queens Puzzle
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques. The eight queens puzzle is a special case of the more general ''n'' queens problem of placing ''n'' non-attacking queens on an ''n''×''n'' chessboard. Solutions exist for all natural numbers ''n'' with the exception of ''n'' = 2 and ''n'' = 3. Although the exact number of solutions is only known for ''n'' ≤ 27, the asymptotic growth rate of the number of solutions is (0.143 ''n'')''n''. History Chess composer Max Bezzel published the eight queens puzzle in 1848. Franz Nauck published the first solutions in 1850.W. W. Rouse Ball (1960) "The Eight Queens Problem", in ''Mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chessboard
A chessboard is a used to play chess. It consists of 64 squares, 8 rows by 8 columns, on which the chess pieces are placed. It is square in shape and uses two colours of squares, one light and one dark, in a chequered pattern. During play, the board is oriented such that each player's near-right corner square is a light square. The columns of a chessboard are known as ', the rows are known as ', and the lines of adjoining same-coloured squares (each running from one edge of the board to an adjacent edge) are known as '. Each square of the board is named using algebraic, descriptive, or numeric chess notation; algebraic notation is the FIDE standard. In algebraic notation, using White's perspective, files are labeled ''a'' through ''h'' from left to right, and ranks are labeled ''1'' through ''8'' from bottom to top; each square is identified by the file and rank which it occupies. The a- through d-files comprise the , while the e- through h-files comprise the . History and evo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Chess Problem
A mathematical chess problem is a mathematical problem which is formulated using a chessboard and chess pieces. These problems belong to recreational mathematics. The most well-known problems of this kind are the eight queens puzzle and the knight's tour problem, which have connection to graph theory and combinatorics. Many famous mathematicians studied mathematical chess problems, such as, Thabit, Euler, Legendre and Gauss. Besides finding a solution to a particular problem, mathematicians are usually interested in counting the total number of possible solutions, finding solutions with certain properties, as well as generalization of the problems to N×N or M×N boards. Independence problem An ''independence problem'' (or ''unguard'') is a problem in which, given a certain type of chess piece (queen, rook, bishop, knight or king), one must find the maximum number that can be placed on a chessboard so that none of the pieces attack each other. It is also required that an actual ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Mathematics (journal)
''Discrete Mathematics'' is a biweekly peer-reviewed scientific journal in the broad area of discrete mathematics, combinatorics, graph theory, and their applications. It was established in 1971 and is published by North-Holland Publishing Company. It publishes both short notes, full length contributions, as well as survey articles. In addition, the journal publishes a number of special issues each year dedicated to a particular topic. Although originally it published articles in French and German, it now allows only English language articles. The editor-in-chief is Douglas West ( University of Illinois, Urbana). History The journal was established in 1971. The very first article it published was written by Paul Erdős, who went on to publish a total of 84 papers in the journal. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.87. Notable publications * The 1972 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Robinson–Schensted Correspondence
In mathematics, the Robinson–Schensted correspondence is a bijective correspondence between permutations and pairs of standard Young tableaux of the same shape. It has various descriptions, all of which are of algorithmic nature, it has many remarkable properties, and it has applications in combinatorics and other areas such as representation theory. The correspondence has been generalized in numerous ways, notably by Knuth to what is known as the Robinson–Schensted–Knuth correspondence, and a further generalization to pictures by Zelevinsky. The simplest description of the correspondence is using the Schensted algorithm , a procedure that constructs one tableau by successively inserting the values of the permutation according to a specific rule, while the other tableau records the evolution of the shape during construction. The correspondence had been described, in a rather different form, much earlier by Robinson , in an attempt to prove the Littlewood–Richardson rule. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyomino
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in ''Fairy Chess Review'' between the years 1937 to 1957, under the name of "dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 "Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, the study ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ferrers Diagram
In number theory and combinatorics, a partition of a positive integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.) For example, can be partitioned in five distinct ways: : : : : : The order-dependent composition is the same partition as , and the two distinct compositions and represent the same partition as . A summand in a partition is also called a part. The number of partitions of is given by the partition function . So . The notation means that is a partition of . Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials and of the symmetric group and in group representation theory in general. Examples The seven partitions of 5 are: * 5 * 4 + 1 * 3 + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]