Tarski Monster Group
   HOME
*





Tarski Monster Group
In the area of modern algebra known as group theory, a Tarski monster group, named for Alfred Tarski, is an infinite group ''G'', such that every proper subgroup ''H'' of ''G'', other than the identity subgroup, is a cyclic group of order a fixed prime number ''p''. A Tarski monster group is necessarily simple. It was shown by Alexander Yu. Olshanskii in 1979 that Tarski groups exist, and that there is a Tarski ''p''-group for every prime ''p'' > 1075. They are a source of counterexamples to conjectures in group theory, most importantly to Burnside's problem and the von Neumann conjecture. Definition Let p be a fixed prime number. An infinite group G is called a Tarski monster group for p if every nontrivial subgroup (i.e. every subgroup other than 1 and G itself) has p elements. Properties * G is necessarily finitely generated. In fact it is generated by every two non-commuting elements. * G is simple. If N\trianglelefteq G and U\leq G is any subgroup distinct from N the su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alfred Tarski
Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, and analytic philosophy. Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983. Feferman A. His biographers Anita Burdman Feferman and Solomon Feferman state that, "Along with his contemporary, Kurt Gödel, he changed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a set and an operation that combines any two elements of the set to produce a third element of the set, in such a way that the operation is associative, an identity element exists and every element has an inverse. These three axioms hold for number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a '' generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which alway ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The date of incorporation is listed as 1999 by Companies House of Gibraltar, who class it as a holding company; however it is understood that SIMPLE Group's business and trading activities date to the second part of the 90s, probably as an incorporated body. SIMPLE Group Limited is a conglomerate Conglomerate or conglomeration may refer to: * Conglomerate (company) * Conglomerate (geology) * Conglomerate (mathematics) In popular culture: * The Conglomerate (American group), a production crew and musical group founded by Busta Rhymes ** ... that cultivate secrecy, they are not listed on any Stock Exchange and the group is owned by a complicated series of offshore trusts. The Sunday Times stated that SIMPLE Group's interests could be eval ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aleksandr Olshansky
Aleksandr Yuryevich Olshansky (russian: Александр Юрьевич Ольшанский; born 19 January 1946, Saratov) is a Soviet and Russian mathematician, Doctor of Physical and Mathematical Sciences (1979), laureate of the Maltsev Prize, a professor of mathematics at Vanderbilt University (since 1999). In 1983 he was an Invited Speaker at the International Congress of Mathematicians in Warsaw. He is a specialist in the field of combinatorial and geometric group theory, and also has several papers on Lie algebras and associative algebras. He is an honorary member of the American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, .... References External links Александр Юрьевич Ольшанскийon halgebra.math.msu.su Алекс ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counterexample
A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "John Smith is not a lazy student" is a counterexample to the generalization “students are lazy”, and both a counterexample to, and disproof of, the universal quantification “all students are lazy.” In mathematics, the term "counterexample" is also used (by a slight abuse) to refer to examples which illustrate the necessity of the full hypothesis of a theorem. This is most often done by considering a case where a part of the hypothesis is not satisfied and the conclusion of the theorem does not hold. In mathematics In mathematics, counterexamples are often used to prove the boundaries of possible theorems. By using counterexamples to show that certain conjectures are false, mathematical researchers can then avoid going down blind alleys and learn to modify conjectures t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Burnside's Problem
The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. It was posed by William Burnside in 1902, making it one of the oldest questions in group theory and was influential in the development of combinatorial group theory. It is known to have a negative answer in general, as Evgeny Golod and Igor Shafarevich provided a counter-example in 1964. The problem has many refinements and variants (see bounded and restricted below) that differ in the additional conditions imposed on the orders of the group elements, some of which are still open questions. Brief history Initial work pointed towards the affirmative answer. For example, if a group ''G'' is finitely generated and the order of each element of ''G'' is a divisor of 4, then ''G'' is finite. Moreover, A. I. Kostrikin was able to prove in 1958 that among the finite groups with a given number of generators and a given prime exponent, there exists ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann Conjecture
In mathematics, the von Neumann conjecture stated that a group (mathematics), group ''G'' is non-Amenable group, amenable if and only if ''G'' contains a subgroup that is a free group on two Generating set of a group, generators. The conjecture was disproved in 1980. In 1929, during his work on the Banach–Tarski paradox, John von Neumann defined the concept of amenable groups and showed that no amenable group contains a free subgroup of rank 2. The suggestion that the converse might hold, that is, that every non-amenable group contains a free subgroup on two generators, was made by a number of different authors in the 1950s and 1960s. Although von Neumann's name is popularly attached to the conjecture, its first written appearance seems to be due to Mahlon Marsh Day in 1957. The Tits alternative is a fundamental theorem which, in particular, establishes the conjecture within the class of linear groups. The historically first potential counterexample is Thompson groups, Thompson g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Continuum (set Theory)
In the mathematical field of set theory, the continuum means the real numbers, or the corresponding (infinite) cardinal number, denoted by \mathfrak. Georg Cantor proved that the cardinality \mathfrak is larger than the smallest infinity, namely, \aleph_0. He also proved that \mathfrak is equal to 2^\!, the cardinality of the power set of the natural numbers. The ''cardinality of the continuum'' is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers, \aleph_0, or alternatively, that \mathfrak = \aleph_1. Linear continuum According to Raymond Wilder (1965), there are four axioms that make a set ''C'' and the relation < into a linear continuum: * ''C'' is simply ordered with respect to <. * If
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amenable Group
In mathematics, an amenable group is a locally compact topological group ''G'' carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive measure (or mean) on subsets of ''G'', was introduced by John von Neumann in 1929 under the German name "messbar" ("measurable" in English) in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "''mean''". The amenability property has a large number of equivalent formulations. In the field of analysis, the definition is in terms of linear functionals. An intuitive way to understand this version is that the support of the regular representation is the whole space of irreducible representations. In discrete group theory, where ''G'' has the discrete topology, a simpler definition is used. In this setting, a group is amenable if one can say what pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]