TU (time Unit)
   HOME
*





TU (time Unit)
A time unit (TU) is a unit of time equal to 1024 microseconds. It was originally introduced in IEEE 802.11-1999 standard{{cite book , title=A Field Guide to Wireless LANs: For Administrators and Power Users , first=Thomas , last=Maufer , date=2004 , publisher=Prentice Hall Professional , work=The Radia Perlman Series in Computer Networking and Security Series , isbn=9780131014060 , id=0131014064 , page=144 , url=https://books.google.com/books?id=GB-87qyhc8sC&pg=PA142 , access-date=2015-10-27 and continues to be used in newer issues of the IEEE 802.11 standard. A whole number of such units are used to describe several intervals in that standard. The use of the term is to avoid using the term "millisecond", which is about 2.4% shorter. The unit allows for maintaining intervals that are easy to implement in hardware that has a 1 MHz clock (by dividing the clock signal in half ten times, rather than operating a phase-locked loop or digital divider to divide such a clock ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microseconds
A microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available. A microsecond is equal to 1000 nanoseconds or of a millisecond. Because the next SI prefix is 1000 times larger, measurements of 10−5 and 10−4 seconds are typically expressed as tens or hundreds of microseconds. Examples * 1 microsecond (1 μs) – cycle time for frequency (1 MHz), the inverse unit. This corresponds to radio wavelength 300 m (AM medium wave band), as can be calculated by multiplying 1 μs by the speed of light (approximately ). * 1 microsecond – the length of time of a high-speed, commercial strobe light flash (see air-gap flash). * 1 microsecond – protein folding takes place on the order of microseconds. * 1.8 microseconds – the amount of time subtracted from the Earth's day as a result of the 2011 Japanese earthquake. * 2 m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Institute Of Electrical And Electronics Engineers
The Institute of Electrical and Electronics Engineers (IEEE) is a 501(c)(3) professional association for electronic engineering and electrical engineering (and associated disciplines) with its corporate office in New York City and its operations center in Piscataway, New Jersey. The mission of the IEEE is ''advancing technology for the benefit of humanity''. The IEEE was formed from the amalgamation of the American Institute of Electrical Engineers and the Institute of Radio Engineers in 1963. Due to its expansion of scope into so many related fields, it is simply referred to by the letters I-E-E-E (pronounced I-triple-E), except on legal business documents. , it is the world's largest association of technical professionals with more than 423,000 members in over 160 countries around the world. Its objectives are the educational and technical advancement of electrical and electronic engineering, telecommunications, computer engineering and similar disciplines. History Origins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IEEE 802
IEEE 802 is a family of Institute of Electrical and Electronics Engineers (IEEE) standards for local area networks (LAN), personal area network (PAN), and metropolitan area networks (MAN). The IEEE 802 LAN/MAN Standards Committee (LMSC) maintains these standards. The IEEE 802 family of standards has had twenty-four members, numbered 802.1 through 802.24, with a working group of the LMSC devoted to each. However, not all of these working groups are currently active. The IEEE 802 standards are restricted to computer networks carrying variable-size packets, unlike cell relay networks, for example, in which data is transmitted in short, uniformly sized units called cells. Isochronous signal networks, in which data is transmitted as a steady stream of octets, or groups of octets, at regular time intervals, are also outside the scope of the IEEE 802 standards. The number 802 has no significance: it was simply the next number in the sequence that the IEEE used for standards projects. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prentice Hall Professional
Prentice Hall was an American major educational publisher owned by Savvas Learning Company. Prentice Hall publishes print and digital content for the 6–12 and higher-education market, and distributes its technical titles through the Safari Books Online e-reference service. History On October 13, 1913, law professor Charles Gerstenberg and his student Richard Ettinger founded Prentice Hall. Gerstenberg and Ettinger took their mothers' maiden names, Prentice and Hall, to name their new company. Prentice Hall became known as a publisher of trade books by authors such as Norman Vincent Peale; elementary, secondary, and college textbooks; loose-leaf information services; and professional books. Prentice Hall acquired the training provider Deltak in 1979. Prentice Hall was acquired by Gulf+Western in 1984, and became part of that company's publishing division Simon & Schuster. S&S sold several Prentice Hall subsidiaries: Deltak and Resource Systems were sold to National Education ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase-locked Loop
A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is related to the phase of an input signal. There are several different types; the simplest is an electronic circuit consisting of a variable frequency oscillator and a phase detector in a feedback loop. The oscillator's frequency and phase are controlled proportionally by an applied voltage, hence the term voltage-controlled oscillator (VCO). The oscillator generates a periodic signal of a specific frequency, and the phase detector compares the phase of that signal with the phase of the input periodic signal, to adjust the oscillator to keep the phases matched. Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same. Consequently, in addition to synchronizing signals, a phase-locked loop can track an input frequency, or it can generate a frequency that is a multiple of the input frequency. These properties are use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Prefix
A binary prefix is a unit prefix for multiples of units. It is most often used in data processing, data transmission, and digital information, principally in association with the bit and the byte, to indicate multiplication by a power of 2. As shown in the table to the right there are two sets of symbols for binary prefixes, one set established by International Electrotechnical Commission (IEC) and several other standards and trade organizations using two-letter symbols, e.g. ''Mi'' indicating with a second set established by semiconductor industry convention using one-letter symbols, e.g., ''M'' also indicating . In most contexts, industry uses the multipliers ''kilo'' (''k''), ''mega'' (''M''), ''giga'' (''G''), etc., in a manner consistent with their meaning in the International System of Units (SI), namely as powers of 1000. For example, a 500-gigabyte hard disk holds bytes, and a 1 Gbit/s (gigabit per second) Ethernet connection transfers data at nominal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




IEEE 1541
IEEE 1541-2002 is a standard issued in 2002 by the Institute of Electrical and Electronics Engineers (IEEE) concerning the use of prefixes for binary multiples of units of measurement related to digital electronics and computing. While the International System of Units (SI) defines multiples based on powers of ten (like k = 103, M = 106, etc.), a different definition is sometimes used in computing, based on powers of two (like k = 210, M = 220, etc.) This is due to the use of binary addressing for computer memory locations. In the early years of computing, there was no significant error in using the same prefix for either quantity (210 = 1024 and 103 = 1000 are equal, to two significant figures). Thus, the SI prefixes were borrowed to indicate nearby binary multiples for these computer-related quantities. Meanwhile, manufacturers of storage devices, such as hard disks, traditionally used the standard decimal meanings of the prefixes, and decimal multiples are used for transmiss ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jiffy (time)
Jiffy can be an informal term for any unspecified short period, as in "I will be back in a jiffy". From this, it has acquired a number of more precise applications as the name of multiple units of measurement, each used to express or measure very brief durations of time. First attested in 1780, the word's origin is unclear, though one suggestion is that it was thieves' cant for lightning. It was common in a number of Scots English dialects and in John Jamieson's ''Etymological Dictionary of the Scottish Language'' (1808) it is suggested that it is a corruption of ' gliff' (glimpse) or 'gliffin' (glance) (compare: 'in the blink of an eye') and may ultimately derive from Gothic or Teutonic words for 'shine'. ('Gliff' or 'gliss' for 'a transient view' was also found in older English poetry as early as 1738 .) Beginnings in measurement The earliest technical usage for jiffy was defined by Gilbert Newton Lewis (1875–1946). He proposed a unit of time called the "jiffy" which was eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]