TC0
   HOME
*





TC0
TC0 is a complexity class used in circuit complexity. It is the first class in the hierarchy of TC (complexity), TC classes. TC0 contains all languages which are decided by Boolean circuits with constant depth and polynomial size, containing only unbounded fan-in AND gates, OR gates, NOT gates, and majority gates. Equivalently, threshold gates can be used instead of majority gates. TC0 contains several important problems, such as sorting ''n'' ''n''-bit numbers, multiplying two ''n''-bit numbers, integer division or recognizing the Dyck language with two types of parentheses. Complexity class relations We can relate TC0 to other circuit classes, including AC0, AC0 and NC1 (complexity), NC1; Vollmer 1999 p. 126 states: \mathsf^0 \subsetneq \mathsf^0[p] \subsetneq \mathsf^0 \subseteq \mathsf^1. Vollmer states that the question of whether the last inclusion above is strict is "one of the main open problems in circuit complexity" (ibid.). We also have that uniform \mathsf^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circuit Complexity
In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class P/poly consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below). Complexity classes defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and P/poly. Size and depth A Boolean circuit with n input bits is a directed acyclic graph in which every node (usually called ''gates'' in this context) is either an input node of in-degree 0 labelle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circuit Complexity
In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class P/poly consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below). Complexity classes defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and P/poly. Size and depth A Boolean circuit with n input bits is a directed acyclic graph in which every node (usually called ''gates'' in this context) is either an input node of in-degree 0 labelle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dyck Language
In the theory of formal languages of computer science, mathematics, and linguistics, a Dyck word is a balanced string of square brackets and The set of Dyck words forms the Dyck language. Dyck words and language are named after the mathematician Walther von Dyck. They have applications in the parsing of expressions that must have a correctly nested sequence of brackets, such as arithmetic or algebraic expressions. Formal definition Let \Sigma = \ be the alphabet consisting of the symbols and Let \Sigma^ denote its Kleene closure. The Dyck language is defined as: : \. Context-free grammar It may be helpful to define the Dyck language via a context-free grammar in some situations. The Dyck language is generated by the context-free grammar with a single non-terminal , and the production: : That is, ''S'' is either the empty string () or is " , an element of the Dyck language, the matching ", and an element of the Dyck language. An alternative context-free grammar for the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complexity Class
In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time or memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements. For instance, the class P is the set of decision problems solvable by a deterministic Turing machine in polynomial time. There are, however, many complexity classes defined in terms of other types of problems (e.g. counting problems and function problems) and using other models of computation (e.g. probabilistic Turing machines, interactive proof systems, Boolean circuits, and quantum computers). The study of the relationships between complexity classes is a ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TC (complexity)
In theoretical computer science, and specifically computational complexity theory and circuit complexity, TC is a complexity class of decision problems that can be recognized by threshold circuits, which are Boolean circuits with AND, OR, and Majority gates. For each fixed ''i'', the complexity class TCi consists of all languages that can be recognized by a family of threshold circuits of depth O(\log^i n), polynomial size, and unbounded fan-in Fan-in is the number of inputs a logic gate can handle. For instance the fan-in for the AND gate shown in the figure is 3. Physical logic gates with a large fan-in tend to be slower than those with a small fan-in. This is because the complexity o .... The class TC is defined via :\mbox = \bigcup_ \mbox^i. Relation to NC and AC The relationship between the TC, NC and the AC hierarchy can be summarized as follows: :\mbox^i \subseteq \mbox^i \subseteq \mbox^i \subseteq \mbox^. In particular, we know that :\mbox^0 \subsetneq \mbox^0 \subse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Boolean Circuit
In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible input length. Boolean circuits are defined in terms of the logic gates they contain. For example, a circuit might contain binary AND and OR gates and unary NOT gates, or be entirely described by binary NAND gates. Each gate corresponds to some Boolean function that takes a fixed number of bits as input and outputs a single bit. Boolean circuits provide a model for many digital components used in computer engineering, including multiplexers, adders, and arithmetic logic units, but they exclude sequential logic. They are an abstraction that omits many aspects relevant to designing real digital logic circuits, such as metastability, fanout, glitches, power consumption, and propagation delay variability. Formal definition In giving a forma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AND Gate
The AND gate is a basic digital logic gate that implements logical conjunction (∧) from mathematical logic AND gate behaves according to the truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If not all inputs to the AND gate are HIGH, LOW output results. The function can be extended to any number of inputs. Symbols There are three symbols for AND gates: the American (ANSI or 'military') symbol and the IEC ('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. Additional inputs can be added as needed. For more information see Logic gate symbols article. It can also be denoted as symbol "^" or "&". The AND gate with inputs ''A'' and ''B'' and output ''C'' implements the logical expression C = A \cdot B. This expression also may be denoted as C=A \wedge B or C=A \And B. Implementations An AND gate can be designed using only N-channel (pictured) or P-channel MOSFETs, but is usually implemented with both (CMOS). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

OR Gate
The OR gate is a digital logic gate that implements logical disjunction. The OR gate returns true if either or both of its inputs are true; otherwise it returns false. The input and output states are normally represented by different voltage levels. Description The gate accepts two inputs. It outputs a 1 if either or both of these inputs are 1, or outputs a 0 only if both inputs are 0. The inputs and outputs are binary digits (" bits") which have two possible logical states. In addition to 1 and 0, these states may be called true and false, high and low, active and inactive, or other such pairs of symbols. Thus it performs logical disjunction (∨) from mathematical logic. The gate can be represented with the plus sign (+) because it can be used for logical addition. Equivalently, an OR gate finds the ''maximum'' between two binary digits, just as the AND gate finds the ''minimum''. Together with the AND gate and the NOT gate, the OR gate is one of three basic logic gate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Majority Gate
In Boolean logic, the majority function (also called the median operator) is the Boolean function that evaluates to false when half or more arguments are false and true otherwise, i.e. the value of the function equals the value of the majority of the inputs. Representing true values as 1 and false values as 0, we may use the (real-valued) formula: :\langle p_1,\dots,p_n \rangle = \operatorname \left ( p_1,\dots,p_n \right ) = \left \lfloor \frac + \frac \right \rfloor. The "−1/2" in the formula serves to break ties in favor of zeros when the number of arguments ''n'' is even. If the term "−1/2" is omitted, the formula can be used for a function that breaks ties in favor of ones. Most applications deliberately force an odd number of inputs so they don't have to deal with the question of what happens when exactly half the inputs are 0 and exactly half the inputs are 1. The few systems that calculate the majority function on an even number of inputs are often biased tow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Threshold Gate
Threshold may refer to: Architecture * Threshold (door), the sill of a door Media * ''Threshold'' (1981 film) * ''Threshold'' (TV series), an American science fiction drama series produced during 2005-2006 * "Threshold" (''Stargate SG-1''), an episode of the TV series * "Threshold" (''Star Trek: Voyager''), an episode of the TV series * Threshold Entertainment, a Hollywood Intellectual Property Management and Production Company * Threshold Podcast, a podcast focused on long-form reporting of climate justice topics Literature * ''Threshold'' (1990 novel), a science fiction novel by Chris and Janet Morris * ''Threshold'' (Sara Douglass novel), a fantasy novel * ''Threshold'' (Palmer novel), a science fiction novel by David R. Palmer * ''Threshold'', the first volume of the collected short fiction of Roger Zelazny * ''Threshold'' (DC Comics), a comic book published by DC Comics * Threshold (''Doctor Who''), an organization in ''Doctor Who'' comic strips * ''Threshold'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




NC1 (complexity)
In computational complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem with input size ''n'' is in NC if there exist constants ''c'' and ''k'' such that it can be solved in time using parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.Arora & Barak (2009) p.120 Just as the class P can be thought of as the tractable problems ( Cobham's thesis), so NC can be thought of as the problems that can be efficiently solved on a parallel computer.Arora & Barak (2009) p.118 NC is a subset of P because polylogarithmic parallel computations can be simulated by polynomial-time sequential ones. It is unknown whether NC = P, but most researchers suspect this to be false, meaning that there are probably some tractable pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]